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Political scientists have long been concerned about the validity of survey measurements. Although many have studied
classical measurement error in linear regression models where the error is assumed to arise completely at random, in a
number of situations the error may be correlated with the outcome. We analyze the impact of differential measurement error
on causal estimation. The proposed nonparametric identification analysis avoids arbitrary modeling decisions and formally
characterizes the roles of different assumptions. We show the serious consequences of differential misclassification and offer
a new sensitivity analysis that allows researchers to evaluate the robustness of their conclusions. Our methods are motivated
by a field experiment on democratic deliberations, in which one set of estimates potentially suffers from differential
misclassification. We show that an analysis ignoring differential measurement error may considerably overestimate the
causal effects. This finding contrasts with the case of classical measurement error, which always yields attenuation bias.

olitical scientists have long been concerned about

measurement error. In particular, various conse-

quences of measurement error have been exten-
sively studied in the context of survey research (e.g., Achen
1975; Asher 1974; Bartels 1993; Zaller and Feldman 1992).
However, the existing research has either completely ig-
nored the problem or exclusively focused on classical
measurement error in linear regression models where the
error is assumed to arise completely at random. In this
article, we formally analyze the impact of nonclassical
measurement error on the estimation of causal effects.
Given the increasing use of randomized experiments in
the discipline (Druckman et al. 2006; Horiuchi, Imai,
and Taniguchi 2007), measurement error represents a

threat to causal inference. Indeed, many experiments
use surveys to measure treatment and outcome vari-
ables, which introduces the possibility of measurement
error.

The methodological literature on measurement error
is also immense (see Carroll et al. 2006), and yet statisti-
cians and econometricians are only beginning to address
measurement error problems explicitly in the formal sta-
tistical framework of causal inference (e.g., Lewbel 2007).
Furthermore, much of the previous work has focused on
nondifferential measurement error where the error is as-
sumed to be independent of the outcome.! Nevertheless,
differential measurement error frequently occurs in retro-
spective studies where measurements are taken after the
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"For example, in an authoritative monograph of this field, Carroll et al. (2006) explain that “Most of this book focuses on nondifferential
measurement error models” (37). Note that unlike classical measurement error studied in political science, nondifferential error may
depend on the true value of the mismeasured variable.
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outcome is realized and thus the error could be correlated
with the outcome.? Differential measurement error can
also arise in prospective studies if, for example, an unob-
served covariate is correlated with both the outcome and
the measurement error.

In this article, we study the nonparametric identifica-
tion of the average treatment effect (ATE) when a binary
treatment variable is measured with differential error.
Contributing to the methodological literature about non-
parametric identification in causal inference (e.g., Balke
and Pearl 1997; Imai 2008; Manski 1995), we derive for the
first time the sharp (i.e., best possible) bounds of the ATE
while explicitly allowing for the possibility of differential
misclassification of the treatment.

Identification Analysis. As advocated by Manski
(1995, 2007), the goal of nonparametric identification
analysis is to establish the domain of consensus among
researchers regarding what can be learned about causal
quantities of interest from the data alone. In many sit-
uations, including the one we consider in this article,
the quantities of interest cannot be consistently esti-
mated without additional assumptions. In such cases, the
identification analysis only yields the bounds rather than
the point estimates of causal effects. The width of these
bounds reveals the limitations of the research design em-
ployed for a particular study regardless of the sample
size. Thus, identification problems must be addressed be-
fore the problems of statistical inference, which concerns
the estimation based on a finite sample. In addition, the
identification analysis can formally characterize the roles
of different assumptions by comparing the identification
region under alternative sets of assumptions. We believe
that nonparametric identification analysis offers political
scientists a way to evaluate the extent to which their con-
clusions depend on statistical assumptions rather than
empirical evidence.’

The result of our identification analysis reveals that,
under the assumption that the mismeasured treatment is
positively correlated with the true treatment, the sharp
bounds are informative even in the presence of differ-
ential measurement error. Unfortunately, the resulting
bounds are wide, and contrary to the conclusion under

2A related problem is that of endogeneity (or reverse causality). We
later discuss the key differences between endogeneity and differen-
tial measurement error briefly.

3Nonparametric identification analysis is rarely used in the disci-
pline. Exceptions include applications to ecological inference (Dun-
can and Davis 1953), voter registration laws (Hanmer 2007), and
suicide terrorism (Ashworth et al. 2008).
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the nondifferential misclassification settings, the bounds
always include zero. Thus, additional assumptions are re-
quired to further narrow the bounds. We introduce such
assumptions and show how to integrate them into the
identification analysis. In addition, we characterize the
identification region as a function of unknown treatment
assignment probability so that researchers can incorpo-
rate their qualitative knowledge (whenever available) and
obtain the range of plausible values of the ATE that is
more informative than the bounds under a minimum
set of assumptions. Our analysis highlights the signifi-
cant role played by such auxiliary information when the
measurement error is differential.

Sensitivity Analysis. Another methodological contri-
bution of this article is to propose a new sensitivity analysis
for differential measurement error. Sensitivity analysis is
a common strategy to assess the robustness of empirical
evidence by examining how one’s estimate varies when
a key assumption is relaxed (e.g., Rosenbaum 2002).* In
our analysis, we derive the largest amount of misclas-
sification that could occur without altering the original
conclusions. If this sensitivity parameter turns out to be
relatively large, we may conclude that differential mea-
surement error does not threaten the validity of one’s
findings. Therefore, the proposed sensitivity analysis rep-
resents another useful tool for evaluating the credibility of
empirical findings in the possible presence of differential
measurement error.

Road Map. In the next section, we discuss several
examples in political science where differential measure-
ment error may arise. Then, we describe a random-
ized field experiment on democratic deliberations, which
motivates our formal identification analysis, and dis-
cuss the nature of the methodological challenges posed
by the experiment. In the following section, we briefly
summarize the methodological literature and show that
measurement error is often assumed to be indepen-
dent of the outcome variable. We then introduce dif-
ferential measurement error and formalize credible as-
sumptions. We show how to obtain the sharp bounds
of the ATE under these assumptions and also propose
a new sensitivity analysis. Then, we illustrate our pro-
posed methods by applying them to the democratic
deliberations experiment and report the findings. Fi-
nally, we summarize our main theoretical and empirical
findings.

*A recent application of this method in political science is Quinn
(2008).
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Differential Measurement Error
in Political Science

As we formally discuss later, measurement error in the
treatment variable is differential if it is not conditionally
independent of outcome given observed covariates. This
type of mismeasurement is common in political science,
especially when measurements are self-reported via sur-
vey. The methodology we develop in this article can be
applied to various situations where differential mismea-
surement may exist, including the examples we discuss in
this section.

A typical example of differential measurement error
is found in retrospective studies, where a causal variable
of interest (i.e., treatment) is measured after the outcome
already occurred. In such a case, respondents’ propensity
of misreporting may be directly affected by and thus cor-
related with the outcome variable. For example, students
of political participation are often interested in the effect
of (pre-election) political knowledge on voting behav-
ior (see Galston 2001 for a review). In many large-scale
surveys, including American National Election Studies
and British Election Studies, however, factual knowledge
questions only appear in post-election surveys. Because
participation in an election could increase respondents’
political interests and thus their level of political knowl-
edge, the answers to those questions may suffer from
differential measurement error. This suggests that infer-
ences based on these responses may be invalid. For exam-
ple, Mondak (1999) regresses respondents’ turnout on
their post-election political knowledge and discusses its
implications. However, due to differential measurement
error, the reported regression coefficient will be a biased
estimate of causal effect.

Even if measurement is taken before outcome is ob-
served, differential measurement error could still arise
if outcome and measurement error are both correlated
with an unobserved variable. This possibility is of major
concern in survey research, where for many variables of
interest the degree of mismeasurement is known to be
correlated with respondent characteristics. For example,
Prior (2009) shows via a survey experiment that the mag-
nitude of overreporting media exposure is associated with
various demographic and attitudinal characteristics, such
as education and level of political interest. If these char-
acteristics are also correlated with the outcome of interest
(e.g., voting) but are not included in the analysis, then the
measurement error may become differential.

In the above examples, researchers may be able to
minimize differential measurement error via the use of
appropriate research design. In other situations, differ-
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ential error is difficult to avoid. For example, in the lit-
erature on racial cues, experimental studies have shown
that respondents with strong racial predispositions tend
to report characteristic views on policy issues, such as
crime and government welfare spending, but only when
such predispositions are primed by implicit racial cues
(e.g., Mendelberg 2001; Valentino, Hutchings, and White
2002). In these studies, racial predispositions are mea-
sured after the experimental manipulations, since ask-
ing such questions might reveal researchers’ intentions
and thus nullify the implicitness of the cues. However,
because exposure to experimental manipulations that
contain racial messages potentially affects respondents’
attitude toward other racial groups, measuring racial pre-
dispositions after exposure may induce differential mea-
surement error. A recent study by Huber and Lapinski
(2006) found both explicit and implicit racial cues to be
equally effective when racial resentments are measured
before exposure to the cues. Of course, this finding is dif-
ficult to interpret because it could be either due to the
nullification of implicit cues or that of differential mea-
surement error. This dilemma raises the question of when
to best measure racial predispositions in racial cue stud-
ies. (This question is directly addressed in our separate
ongoing project.)

A Motivating Example and the
Framework of Causal Inference

In this section, we briefly describe the randomized field
experiment that serves as both a motivation and an il-
lustration for our proposed identification and sensitivity
analysis. A more complete description of the study is given
by Humphreys, Masters, and Sandbu (2006), who origi-
nally analyzed the experiment. This pioneering study also
holds important implications for major theoretical de-
bates in the fast-growing literature of democratic deliber-
ations (see, for example, Mendelberg 2002). As explained
below, the differential measurement error problem arises
in this experiment primarily because the treatment vari-
able was measured after the outcome has realized.

Background

The experiment was conducted in the Democratic Re-
public of Sio Tomé and Principe, an island state off the
western coast of Africa. In 2004, the Santomean govern-
ment held a national forum, in which citizens gathered
in small groups moderated by randomly assigned discus-
sion leaders and discussed economic policy priorities for
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the country. The forum took place as a result of a mil-
itary coup and ensuing diplomatic interventions. From
a theoretical perspective, the Santomean national forum
provides an interesting case. Many political theorists and
practitioners in civil society have advocated such partic-
ipatory processes, on the ground that participation and
deliberation lead to better, more rational collective deci-
sions (e.g., Dryzek 1990, 2000; Habermas 1985). However,
others have argued that such participatory decision mak-
ing is susceptible to the undue influence of authoritative
figures in the deliberation process (e.g., Sanders 1997;
Young 2002). Thus, it is an open question how popu-
lar participation in decision-making processes affects the
practice of democracy, and the national forum experi-
ment provides a unique opportunity to empirically test
these competing theoretical claims in real-world settings.

From a methodological perspective, the fact that dis-
cussion leaders were randomly assigned makes this na-
tional forum an ideal randomized field experiment where
external validity can be improved without compromis-
ing much internal validity. For each of the 56 forum sites
throughout the country, three to four discussion lead-
ers were randomly selected from the pool of potential
leaders, which themselves were selected from government
services and civil society organizations. On the meeting
day, following a plenary session led by one of the lead-
ers on each site, participants were divided into smaller
deliberation groups of about 15 to 20 people in order to
discuss the country’s expenditure priorities. Then, each
of the discussion leaders was assigned to a deliberation
group at random. The groups then discussed a set of pre-
determined questions, which we describe in more detail
later in the article. Finally, the outcomes of the discus-
sion were recorded, and the leaders were asked their own
preferences about those questions about one week after
the meetings. As explained below, this timing of mea-
surement led to possible differential measurement error.
In total, this procedure yielded 148 discussion groups,
which represent our units of observation.

Causal Quantities of Interest and
Immutable Characteristics

The main substantive motivation of this field experiment
was to “examine the extent to which participatory pro-
cesses of this form are in practice vulnerable to manipula-
tion by political elites” (Humphreys, Masters, and Sandbu
2006, 583—84). The authors first provide evidence that the
presence of leaders had a significant effect on the outcome
of the group decisions. To explore why this is the case,
Humphreys, Masters, and Sandbu (2006) propose the
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hypothesis that discussion leaders can manipulate group
decision outcomes toward their own preferences. They
compute the observed correlation between leaders’ pol-
icy preferences and discussion outcomes (see Table 6),
and they examine whether this correlation is positive.

While this is a well-defined causal quantity, we em-
phasize that it does not measure the causal effect of
leaders’ preferences alone on group discussion outcomes
because policy preferences cannot be randomly assigned
to leaders. As a consequence, leaders’ preferences may be
correlated with other observed and unobserved charac-
teristics of their own, making it difficult to isolate the
causal effect that can be attributed to leaders’ preferences
alone. For example, those with higher education may have
different spending priorities and also be more persuasive
as discussion leaders.

A similar problem frequently arises in social sci-
ence randomized experiments. In the statistics literature
on causal inference, estimating the causal effects of im-
mutable characteristics is recognized as a challenge be-
cause it is impossible to manipulate a defining feature
such as gender or race. Yet, these characteristics are asso-
ciated systematically with other attributes such as income,
education, or beliefs. This led some to contend “no cau-
sation without manipulation” (Holland 1986, 959). In
these situations, however, one may still be able to make
an inference about a redefined causal quantity.

For example, Chattopadhyay and Duflo (2004) use
a randomized natural experiment to examine the causal
effect of politicians’ gender on policy outcomes where
randomly selected local village councils were required to
reserve certain policy-making positions for women. In
this case, female politicians differ from their male coun-
terparts in various characteristics other than their gender,
and so the differences in observed policy outcomes cannot
be solely attributed to policy makers’ gender differences.
Other factors such as education could be confounding
factors for evaluating the effect of gender. Thus, we can-
not distinguish whether it is their “femaleness” or the
kind of life experience of a woman who has chosen to
become a politician. Nevertheless, the study can estimate
the effect of having a female politician.

Similarly, in the democratic deliberations experiment
analyzed in this article, the random assignment of lead-
ers does not permit definitive inferences about the causal
effect of leaders’ preferences per se. Therefore, we in-
stead analyze the effect of having deliberative discussions
moderated by a leader with particular policy preferences.
Although we will occasionally refer to this randomized
treatment simply as “leader preferences” for the sake of
brevity, readers should keep in mind that our quantity
of interest is the causal effect of having a leader with
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particular preferences rather than the effect of leaders’
preferences themselves.

Along with the problem of immutable characteris-
tics, the statistical analysis of leader preferences in the na-
tional forum experiment encounters a potential problem
of measurement error. It is this methodological challenge
that we will discuss below at length.’

The Problem of Mismeasured Treatment

As noted above, to explore how discussion leaders in-
fluence deliberation, Humphreys, Masters, and Sandbu
(2006) examine whether the decision outcomes of a group
are more likely to resemble its leader’s policy preferences.
The problem is that leaders’ preferences were measured
after the meetings had taken place and group decisions
had been made. In other words, leaders’ policy preferences
were measured with error that is possibly correlated with
the outcome.®

As Humphreys, Masters, and Sandbu (2006) correctly
point out, this means that “we cannot discount the pos-
sibility that the preferences of the leaders are a result of,
rather than a determinant of, the outcomes of the discus-
sions” (598). For example, discussion leaders who failed to
influence discussion may have an incentive to report the
group decision outcome as their own policy preference
so that they can be viewed as effective leaders. Another
possibility is that discussion leaders may be persuaded
by groups during the deliberation. If the reported prefer-
ences of leaders were influenced by the outcomes of group
discussion, then the direct comparison of the discussion
outcomes and reported leaders’ (post-deliberation) pref-
erences would yield biased estimates of the causal effects
of leaders’ (pre-deliberation) preferences on discussion
outcomes. The authors undertook an informal diagnos-
tic analysis to explore this issue. In this article, we address
their concern about misclassification by conducting a for-
mal analysis.

®An alternative quantity of interest estimated in the Humphreys,
Masters, and Sandbu (2006) study (see Section V), which we do
not examine in this article, is the causal effect of leaders’ presence
on group discussion outcomes, rather than that of leaders’ prefer-
ences. Here, there is no problem with immutable characteristics,
and causal inference could be straightforward (though the fact that
the control group was lacking in this experiment introduces another
identification problem). While we cannot directly randomize pref-
erences, it is possible to randomize whether or not each group hasa
discussion leader and estimate the effect of the presence of a leader
on group discussion outcomes.

6Since leader’s presence can be measured without error, the original
analysis regarding the causal effects of leader’s presence does not
suffer from the differential measurement error problem we study
in this article.
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In particular, we study the nonparametric identifi-
cation of causal effects in the presence of differential
measurement error. We begin by defining the causal quan-
tity of interest and formally stating the measurement er-
ror problem using the potential outcomes notation (e.g.,
Holland 1986). Let ZF € {0, 1} beabinary treatment vari-
able which indicates the unmeasured pre-deliberation
preference of the leader randomly assigned to group
i about a public policy (e.g., whether the government
should spend more on primary education, Z; = 1, ornot,
Z? = 0). In addition, we use Y;(z*) € {0, 1} to define the
(potential) binary outcome of group 7’s discussion, which
is a function of the pre-deliberation preference of its dis-
cussion leader, Z! = z*. The observed group discussion
outcome is then equal to Y; = Z7'Y;(1) 4 (1 — ZF)Y;(0)
or equivalently Y; = Y;(Z}).

Throughout this article, we assume that the true
treatment assignment (i.e., pre-deliberation preferences
of leaders) is unconfounded and a common support of
covariate distributions exists between the treatment and
control groups. This assumption is called strong ignor-
ability in the statistics literature (Rosenbaum and Rubin
1983). Let X be a vector of observed covariates and X be
the support of X. Then, the assumption can be written
as

Assumption 1 (Strong Ignorability)
Z7 1L(Yi(1), Yi(0)) | Xi = x, and
0<Pr(Zf=1]|X;=x)<1 forallx e X.

Assumption 1, which we maintain throughout the arti-
cle, is automatically satisfied in randomized experiments,
while it needs to be carefully examined in observational
studies. Our proposed methods are applicable to certain
observational studies where this assumption holds as well
as any randomized experiments. In the context of the
deliberation experiment we analyze, the second part of
the assumption implies the heterogeneity of leaders’ pre-
deliberation preferences.

In this article, we focus on the ATE of leaders’ prefer-
ences on the group discussion outcome given the observed
covariates. The ATE is defined as

7(x) = E(Yi(1) — Y;(0) | X; = x)
=Pr(Y;=1|2Z'=1,X;, =x)
—Pr(Y;=1|2Z=0,X; =x),
where the equality follows from Assumption 1 and the
binary nature of Y;. In the democratic deliberation ex-
periment, a positive (negative) effect implies that leaders

can influence the outcome of their group discussions in
the same (opposite) direction as their true preferences.
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Next, let Z; € {0, 1} be the leader’s reported (post-
deliberation) policy preference that was measured after
the experiment was conducted. Since it represents the
mismeasured treatment variable, Z; is in general not
equal to Z7. If we ignore the measurement error problem
entirely and assume Z; = Z} for all i, we estimate the
following quantity:

T(x)=E(Yi | Z =1, X; = x)
—E(Y; | Zi =0, X; = x)
=Pr(Y;=1| %=1, X; = x)
—Pr(Yi=1]| Z =0, X; = x). (1)

Clearly, a naive comparison of this kind would lead to a
biased estimate of the quantity of interest (i.e., T(x) #
7*(x)). The causal effect would be overestimated if, for
example, the leaders’ own involvement in the deliberation
process made their opinions closer to those of their group
members.

Before moving on, we address one common miscon-
ception. While the difference between Z; and Z; could be
attributed to the presence of reverse causality, it should be
stressed that a differential measurement error problem is
distinct from an endogeneity problem. Endogeneity im-
plies that the causal variable of interest is itself correlated
with the potential outcomes due to the lack of strong ig-
norability, i.e., Assumption 1. In contrast, our treatment
variable (i.e., the pre-deliberation preference of leaders)
does not suffer from this identification problem because
the treatment is randomized and causally precedent to the
outcome (no post-treatment bias). Thus, the possibility
of reverse causality only affects the measurement of the
causal variable but not the variable itself.”

In what follows, we formally characterize the iden-
tification region of the true ATE by deriving the sharp
(i.e., best possible) bounds under various assumptions.
Our identification analysis establishes the exact degree to
which the data-generating mechanism, when combined

"In contrast, the endogeneity problem does affect the identifica-
tion of the reverse causal effects, i.e., the causal effect of the group
decision on leaders’ post-deliberation preferences. Although this
quantity is not studied either in this article or in the original study
of Humphreys, Masters, and Sandbu (2006), it may be of interest to
researchers who would like to know the degree to which groups can
influence leaders’ preferences rather than vice versa. The difficulty
of identifying this quantity originates in the fact that group deci-
sions are not randomly determined. This is not a measurement er-
ror problem, since both leaders’ post-deliberation preferences (the
outcome variable) and group decisions (the treatment variable)
are directly measured. Rather, it is an endogeneity (or selection)
problem where the treatment variable is not randomized. This dis-
tinction is important because the identification results already exist
in the literature for the situation of endogeneity (see, e.g., Manski
1990).
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with additional assumptions, is informative about the
true ATE in the presence of possible misclassification of
treatment. We also offer a new sensitivity analysis that
allows researchers to evaluate the robustness of their con-
clusions. Because our analysis is nonparametric, the re-
sults do not rely on distributional or other parametric
assumptions of regression models commonly used in the
political science research.

The Proposed Methodology

In this section, we first briefly review the related statistics
and econometrics literature on measurement error mod-
els (see Carroll et al. 2006 and Fuller 1987 for comprehen-
sive monographs). We show that the existing theoretical
results are not applicable to the democratic deliberation
experiment and other studies that suffer from a similar
measurement error problem. We then derive the sharp
bounds on the ATE and develop a new sensitivity analysis
by relaxing the key assumption of the previous literature.

Nondifferential Measurement Error:
A Brief Review of Literature

In classical error-in-variables models, the measurement
errors are assumed to be independent of their true value.
In such models, measurement error generally leads to
attenuation bias. For example, it is well known that a
linear least-squares regression will underestimate the co-
efficient when an explanatory variable is subject to the
classical measurement error. This attenuation bias arises
even when there are control variables in the regression
which are correlated with the true values of the mismea-
sured explanatory variable of interest (e.g., Wooldridge
2002, Section 4.4.2). A large number of existing studies
examine the identification and estimation problems in
the presence of classical measurement error, based on the
existence of auxiliary information, such as a repeat mea-
surement and other instrumental variables (e.g., Buzas
and Stefanski 1996; Carroll et al. 2004; Hausman et al.
1991).

However, this classical errors-in-variables assump-
tion is necessarily violated for binary variables because
errors are always negatively correlated with their cor-
rect values (see Cochran 1968). Thus, in the economet-
rics literature on measurement error models for binary
treatment variables, researchers instead assume that the
measurement error is conditionally independent of the
outcome given the true value as well as the observed
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covariates (e.g., Aigner 1973; Bollinger 1996; Klepper
1988; Lewbel 2007). In this case, the measurement er-
ror is said to be nondifferential, and the assumption can
be written as follows.

Assumption 2 (Nondifferential Measurement Error)
ZilY | Z;, Xi=x forall xeX.

The assumption is also equivalent to the statement that Z;
is a surrogate as defined in the statistics literature (Carroll
et al. 2006, Section 2.5).

Another critical assumption made in the literature is
that the degree of measurement error is not “too large”
in the following sense.

Assumption 3 (Restriction on the Degree of Measure-
ment Error)

Pr(Zi=0|Z2'=1,X; =x)
+Pr(Zi=1|Z=0,X = x)
<1 forallx e X.

The first and second terms in the left-hand side equal
the probabilities of misclassifying Z = 1 as Z; = 0 and
ZF =0 as Z; = 1, respectively. Since the sum of these
probabilities represents the total probability of misclassi-
fication, this assumption implies that the observed treat-
mentstatusis atleast informative about the true treatment
status. In particular, it can be shown that this assumption
implies a positive correlation between the true and mis-
measured treatment variables (though the converse does
not necessarily hold).

Although Assumptions 1-3 are not strong enough to
identify the true ATE or 7*(x), one can derive its sharp
bounds. In particular, Lewbel (2007) shows that under
these three assumptions, the naive estimator based on the
mismeasured treatment variable, T(x), equals the sharp
lower bound of the true ATE. Prior to Lewbel (2007),
Bollinger (1996) shows (in the context of the linear regres-
sion model) that under the additional assumption that the
outcome variable has a finite variance, the ATE also has a
finite sharp upper bound. In addition, recent studies have
explored additional assumptions and auxiliary informa-
tion that can be used to achieve point-identification (e.g.,
Black, Berger, and Scott 2000; Mahajan 2006).

Unfortunately, these existing identification results in
the literature are not applicable to the deliberation exper-
iment or other studies which suffer from a similar dif-
ferential measurement error problem. While Assumption
3 is reasonable, the assumption of nondifferential mea-
surement error is unlikely to hold in our setting. Indeed,
Assumption 2 implies that the conditional distribution of
the self-reported leader preferences given the true pref-
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erences does not depend on group discussion outcomes,
ie, Pr(Zi=11|Y;, Z, X;) =Pr(Zi = 1| ZI, X;). Yet,
as explained in the previous section, the leaders’ pref-
erences may have been influenced by their involvement
in the discussion. Thus, we relax this assumption below
by allowing the measurement error to directly depend
on the discussion outcomes. Our analysis fills the gap in
the methodological literature where the identification of
causal effects under the assumption of differential mea-
surement error has not been systematically studied.

Limited Identification Power under
Differential Measurement Error

Next, we study the implications of relaxing Assumption
2 for the identification of the ATE. We begin by consid-
ering the implications of the assumptions that are gener-
ally applicable and fairly weak when the treatment status
is measured with differential error. First, the following
proposition shows that Assumptions 1 and 3 have only
limited identification power in the presence of differen-
tial measurement error (note that Assumption 1 alone has
no identification power; see Appendix A.1). Although the
resulting sharp bounds are always narrower than the orig-
inalbounds [—1, 1], only either the upper or lower bound
can be informative.

Proposition 1 (Informativeness of Assumptions 1
and 3). Let [a, B] denote the sharp bounds of the aver-
age treatment effect under Assumptions 1 and 3. Then,

I.a=—1 if and only if Pr(Z;=1|Y,=1) <
Pr(Z;=11Y;=0),

2.B8=1 if and only if Pr(Z;=1|Y,=1)>
Pr(Z;=1]Y; =0).

Thus, the bounds are always informative.

A proof is given in Appendix A.2. The proposition states
that if we use [a, B] to denote the sharp bounds un-
der Assumptions 1 and 3, we will have either o >
—1 or B < 1, but neither -1 <a < B <1 nor —a =
B =1 holds. Thus, either the upper or lower bound
is always informative but both cannot be informative
simultaneously.

Proposition 1 suggests that under fairly weak and
generally applicable assumptions about the magnitude of
differential misclassification, the sharp bounds are always
informative but only to a limited degree. This contrasts
with the previous results in the literature, which are only
applicable to nondifferential measurement error of treat-
ment. In the presence of differential misclassification,
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informative inference is difficult to make unless re-
searchers invoke additional assumptions that are specific
to and credible within their own study. As an illustration,
we now consider such assumptions in the context of the
democratic deliberation experiment. Throughout the rest
of the article, we maintain Assumptions 1 and 3.

Additional Assumptions for More
Informative Inference

Below, we consider two kinds of additional assumptions.
The first set of assumptions is concerned about the na-
ture of measurement error. Although they are introduced
in the context of the democratic deliberation experiment,
similar assumptions may be applicable to other studies. To
generate credible assumptions, it is often fruitful to con-
sider the mechanisms underlying the misclassification. As
explained above, the authors of the original analysis are
concerned about “the possibility that the [reported] pref-
erences of the leaders are a result of, rather than a determi-
nant of, the outcomes of the discussions” (Humphreys,
Masters, and Sandbu 2006, 598). Our assumptions di-
rectly address this concern.

The first assumption about the nature of measure-
ment error is related to the possibility that some groups
can persuade leaders while others fail to do so. In par-
ticular, we assume that groups who would always follow
their leader’s (true) preferences lack the ability to per-
suade leaders. To formalize this idea, we stratify groups
into four mutually exclusive “types” based on the poten-
tial values of the outcome given their treatment status.
We use S; € {c, a, n, d} to indicate group ’s type. This
formulation, called principal stratification (Frangakis and
Rubin 2002), is particularly useful for formally incor-
porating assumptions about potential outcomes. Type
¢ groups represent those who comply with their leader
by yielding the same discussion outcome as the leader’s
preference, i.e., (Y;(1), Y;(0)) = (1, 0), whereas type a
groups would always favor the given policy regardless
of what their leaders prefer, i.e., (Y;(1), Y;(0)) = (1, 1).
Type n groups would never favor the given policy, i.e.,
(Y;(1), Y;(0)) = (0,0), and type d groups defy their
leader by always coming to the decision opposite to their
leader’s preference, i.e., (Y;(1), Y;(0)) = (0, 1).

Given this notation, our first assumption can be for-
malized as follows.

Assumption 4 (No Persuasion by Compliant Groups)
Pr(Zi=z|Si=c¢,Z' =2z)=1, forze{0,1}.

The assumption implies that no misclassification occurs
for leaders who are assigned to compliant groups, which
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make the decision in agreement with their leader’s (true)
preferences whatever they may be. This seems plausible as
long as one assumes that the groups’ potential responses
well approximate their capability of persuading the lead-
ers into new preferences. Although these group types are
defined with respect to potential outcomes and thus not
directly observable, they serve as a useful device to ex-
press our substantive assumptions in a form that can be
directly incorporated into our analytical framework. Also,
this formulation can easily incorporate weaker versions
of Assumption 4 using an inequality rather than equal-
ity, eg, Pr(Z; =z | Si=¢,Zf =2) > Pr(Zi=1—z|
Si=c¢, ZF = z)forz € {0, 1}.

The second assumption concerns leaders’ incentives
to misreport their preferences in order to appear effec-
tive in influencing group decisions. This scenario leads to
the assumption that leaders do not misreport their true
preferences if the actual (rather than potential) group de-
cision outcome agrees with their true preferences. Then,
unlike Assumption 4, this assumption can be expressed as
a constraint on the distribution of realized (but not nec-
essarily observed) variables rather than that of principal
strata.

Assumption 5 (Leaders’ Incentives)

Pr(Zi=z|Y=2 2=z =1, forze{0,1}.

Mathematically, the difference between Assumptions 4
and 5 is that the former conditions on the principal
strata with respect to potential outcomes while the lat-
ter conditions on the observed outcome. In substantive
terms, this assumption seems plausible given the role such
“leaders” are expected to play in many cultural settings.
However, we need additional information about their so-
cioeconomic and cultural background to fully assess the
plausibility of this assumption.

Although Assumptions 4 and 5 are formulated dif-
ferently, they both address the concern about the na-
ture of differential measurement error where groups
can influence leaders’ reported preferences. Indeed,
these assumptions are mathematically related. In par-
ticular, Assumption 5 implies Assumption 4 (but
not vice versa) because Assumption 5 is equiva-
lentto Pr(Zi =z | Si=¢,Zf =2)=Pr(Zi=1]| S =
a, 2 =1)=Pr(Zi=0|S;=n2=0)=1 for ze
{0, 1}. Thus, Assumption 5 puts restrictions on the pos-
sibility of differential measurement error for the groups
belonging to S; € {a, n} as well as the compliant groups
with §; = ¢ (i.e., Assumption 4).

In different studies, various substantive knowledge
can be brought into one’s analysis. Applied researchers
can often express these assumptions as restrictions on
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the distributions of either potential outcomes or realized
variables in a manner similar to the two assumptions
described here.

Derivation of the Sharp Bounds under
Additional Assumptions

Having introduced the assumptions, we now show how
to obtain the sharp bounds on the true ATE under dif-
ferent combinations of these assumptions. Throughout
this subsection and for the rest of the article, we maintain
Assumptions 1 and 3. Recall that these two assumptions
imply that the treatment assignment is strongly ignorable
and that the correlation between the true and mismea-
sured treatment status is positive.

The analytical derivation of the sharp bounds under
several assumptions can be a difficult task. Our strategy
is to formulate the problem as one of constrained linear
optimization. The advantage of this approach is that the
sharp bounds can be easily found (whenever they exist)
once all the assumptions are expressed in the form of
linear equality or inequality constraints. Balke and Pearl
(1997) used this strategy to derive the sharp bounds on the
ATE in randomized experiments with noncompliance.
Following the literature, we focus on the derivation of
large sample bounds. The confidence intervals for the
bounds can be calculated using a bootstrap method of
Beran (1988; see Imai and Soneji 2007 for details).

Sharp Bounds under Assumptions 1, 3, and 5. To il-
lustrate our approach, we first provide the exact analytical
solution for the most informative case. In particular, we
assume that Assumptions 1, 3, and 5 are satisfied simul-
taneously. (Recall that Assumption 5 implies Assumption
4.) We begin by letting P,, = Pr(Y; = y, Z; = z) rep-
resent the probabilities of observed strata where y, z €
{0, 1}. Since both Y; and Z;, the realizations of the dis-
cussion outcome and self-reported leader preference, are
observed, the data-generating mechanism alone identi-
fies these probabilities. Next, we denote the probability
of the true treatment status by Q = Pr(Z! = 1). This
quantity is not directly identifiable from the observed
data, but Assumption 1 guarantees 0 < Q < 1. Fur-
thermore, we define {s,, = Pr(Y; =y, Zi =z | Z = 1)
andd,, =Pr(Y; =y, Z; =z| Z; =0)fory,z e {0, 1}.
Then, we can rewrite the probabilities of observed strata
in terms of Q, s, and &y,

Pyz = (1 - Q)d)yz + Q‘L‘yz- (2)

This represents the relationship between the observ-
able joint probabilities and the unobservable conditional
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probabilities that must be satisfied. In other words, it
can be interpreted as a set of baseline constraints when
inferring the true ATE in the presence of differential mis-
classification.
Next, Assumption 3 is equivalent to
1

D Wy + ) < 1. (3)

y=0
Finally, using the Bayes theorem, Assumption 5 can be
equivalently expressed as

b1 = by = 0. (4)

Now, under Assumption 1 the true ATE equals the
following expression:

1 1
T :le—‘lz_Zd)lz- (5)
z=0 z=0

Thus, under Assumptions 1, 3, and 5, the identification
region of the ATE can be obtained by solving the linear
programming problem where the objective function is
equation (5) and the constraints are given by equations
(2), (3), and (4). The following proposition characterizes
the identification region of the true ATE as a function
of the (unidentifiable) treatment assignment probability
Q as well as identifiable quantities. Using this result, we
derive the sharp bounds of the ATE.

Proposition 2 (Identification of the Average Treatment
Effect). Suppose that Assumptions 1, 3, and 5 hold. Then,
the following results are obtained.

1. The identification region of T* can be expressed as
a function of Q and the identifiable quantities in the
following manner.

(_ Po+Pu Pn Po Pt P01>
1-Q 7~ Q 1-Q Q
o P P o)
1-Q 1-Q

<7* < min ( ,
Q Q
2. The sharp upper and lower bounds are given by

Py P
max{—l,min(Poo— 01710
11

—1)} <7 <.
Poo

A proof is given in Appendix A.3.® Proposition 2 im-
plies that without the knowledge of Q, the sharp up-
per bound equals the naive estimate of the ATE, which

—1,

8To be precise, these and other bounds in this article correspond to
the supremum and infinimum of the identification region rather
than its maximum and minimum. This slight abuse of notation
does not alter the interpretation of the bounds.
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ignores the measurement error problem altogether, i.e.,
Q = Py; + Py;. On the other hand, the sharp lower
bound of the ATE never exceeds zero. This result stands in
contrast to the case of nondifferential measurement error
reviewed earlier in this section where measurement error
is found to induce an attenuation bias. Here, we find that
the bias goes in the opposite direction when measure-
ment error is differential. Indeed, Proposition 2 suggests
that the differential misclassification of treatment can se-
riously hamper one’s causal inference.

The expression of the identification region given in
Proposition 2 is useful because it is written as a function
of Q, which is the true treatment assignment probability.
Here, we describe two analytical approaches that exploit
this feature. First, as is the case in the democratic de-
liberation experiment, researchers often have auxiliary
information about the range of possible values of Q. Even
though the value of Z} itself can never be observed for any
i, such auxiliary information might help tighten the sharp
lower and upper bounds and thus significantly improve
the identification result. Second, Proposition 2 implicitly
provides the sharp bounds on Q, which is given by

Q € [Py, 1 — Pyol. (6)

Thus, with some knowledge about Q, we can assess the
plausibility of Assumptions 1, 3, and 5 by letting Q take
different values within this range and observing how the
bounds change. If one believes that the plausible values of
Q lie outside of this range, then those assumptions may
not be satisfied simultaneously. Later, we illustrate how
to conduct analyses like these with the actual data from
the deliberation experiment.

Sharp Bounds under Other Assumptions. Next, we
show how to obtain the sharp bounds under Assumptions
1, 3, and 4. Unlike the case considered above, Assumption
4 places a restriction on the distribution of principal
strata. Thus, it is necessary to represent the constraints
in terms of principal strata. Let m, and m, denote
Pr(S;=s,Zi=z|Z=1) and Pr(S;=s,2Z =z|
Zf =0) for s € {c, a, n,d} and z € {0, 1}, respectively.
Although these probabilities are defined with respect to
unobservable principal strata, they can be re-expressed in
terms of outcomes because a respondent’s type represents
her potential outcome given the treatment she received.
For example, Pr(Y;=1,Z=z| Z=1)=Pr(S; =
. Zi=z|Zi=1)+Pr(Si=a.Z; =z| 2 =1)=
Tez + Moz

Then, we can rewrite the probabilities of observed
strata in terms of Q, jx, and m,,

Py, = (1 - Q)(’T]cz + nnz) + Q('ﬂ-nz + 1sz), (7)
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Py, = (1 - Q)(naz + TIdz) + Q(Trcz + Traz): (8)

for z € {0, 1}. Similarly, Assumption 3 is equivalent to
Z (mj1 +mjo) < L. 9)
je{c,a,n,d}

Finally, using the Bayes theorem, Assumption 4 can be
equivalently expressed as
Pr(Y; =1,Z=0|Z=1)
Pr(Yi=1|2Z=1)
Pr(Y; =0,Z=1]| Z =0)
T Pr(Y,=0|Z =0)

=0 < T =T =M1 =Mmu = 0.

Thus, Assumption 4 provides additional restrictions on
the ATE, which can now be written as

T =11 + a1 — (Ma1 + Mar + Mao + Mao)-

The sharp bounds on the ATE can now be derived
numerically using the standard algorithm for linear pro-
gramming problems subject to the restrictions given in
equations (7), (8), and (9). Likewise, even when only As-
sumptions 1 and 3 hold, the problem can be formulated
in the form of linear programming and the standard al-
gorithm can be applied. Unfortunately, unlike the case
considered in Proposition 2, it is difficult to obtain ex-
act analytical expressions for the bounds in these cases.
In the next section, we report the sharp bounds under
these two sets of assumptions obtained by this methodol-
ogy, along with the analytically derived bounds given in
Proposition 2.

Sensitivity Analysis

The results given in Proposition 2 demonstrate the se-
rious consequences of differential measurement error.
Even under the strongest set of assumptions we consider,
the bounds are wide and always contain zero unless re-
searchers possess auxiliary information about the true
treatment assignment probability. This illustrates that
when differential misclassification is present, adding as-
sumptions may prove insufficient to draw a substantively
interesting conclusion.

More importantly, these substantive assumptions
themselves may be controversial since they cannot be
tested directly from empirical data. For example, lead-
ers may have an opposite incentive of concealing their
influence by reporting policy preferences that are con-
trary to the group decision outcomes. This alterna-
tive scenario is plausible if the leaders are concerned
about being viewed as violating their supposed role of
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facilitating deliberations. If this is the case, we may as-
sume Pr(Z; = z| Y; = z, Zf = z) = 0, rather than the
equality given in Assumption 5. Obviously, this would
lead to bounds that are very different from those given in
Proposition 2.

Here, we offer a new sensitivity analysis that can be
used in the situations where strong assumptions such as
Assumption 4 and 5 are unavailable. Under such circum-
stances, we propose to derive the conditions under which
the original conclusions based on the mismeasured treat-
ment variable still hold. That is, we ask the question, “Can
the experiment be saved in the presence of differential
measurement error?”

More specifically, we vary the magnitude of differ-
ential measurement error and observe how the bounds
of the ATE change as a function of this parameter. Then,
we calculate the maximum size of total misclassification
probability that can be present while still guaranteeing the
conclusions based on the mismeasured treatment. This is
done by replacing Assumption 3 with the following:

Pr(Z;=0|Z=1,X; =x)
+Pr(Zi=1|2{=0,X;=x)<p

forall xe X, (10)
where 0 < p <1, and then deriving the bounds of the
ATE using various values of p. Since p = 0 implies no
measurement error, the maximum value of this error
parameter represents the maximum magnitude of mea-
surement error that can exist without contradicting the
conclusions obtained by incorrectly ignoring the mea-
surement error. Put more simply, our sensitivity analysis
asks how much measurement error we could accommo-
date in order for the original conclusion to remain valid.

The analytical strategies used for the derivation of
the sharp bounds are directly applicable to the proposed
sensitivity analysis under different sets of additional as-
sumptions. Namely, we calculate the sharp bounds while
fixing p to various nonnegative values. This can be done
by solving the linear optimization problem as before with
the following additional constraint:

1
D Wy + ) < (11)
y=0

We can then obtain the maximum value of p which yields
the sharp bounds that do not overlap with zero. A large
value of this maximum value implies that the conclu-
sions obtained from the mismeasured treatment are ro-
bust to the possible existence of differential measurement
error.

553
Empirical Results

To illustrate our proposed methods, we now apply our
identification results to the actual data from the ran-
domized field experiment on democratic deliberations
described earlier.

Data

Of the 12 items on the questionnaire examined by
Humphreys, Masters, and Sandbu (2006), we focus on
five and examine them in detail. The first four questions
concern the government’s spending priorities: whether
resources should be spent on nearby health clinics or
full reliable hospitals (Q3), primary or secondary ed-
ucation (Q4a), road improvement or mass transporta-
tion (Q7b), and village roads or roads between centers
(Q7c¢). The remaining question asks whether participants
prefer to spend or invest the money they obtained as a
windfall in their hypothetical community savings account
(Q11a). For the actual texts used in the questionnaire, see
Humphreys, Masters, and Sandbu (2006). The data set
contains the outcomes of group discussions as well as the
self-reported preference of the discussion leaders for each
question. As explained earlier in the article, the latter is
likely to be measured with differential error because the
measurement was taken after the group discussions were
completed.

Identification Analysis

We begin by examining one of the five questions in detail.
Figure 1 represents our identification results regarding the
ATE for Question 7¢, which asks whether the government
should spend extra resources on village roads (Y; = 0) or
roads between major centers (Y; = 1). The vertical axis
indicates the ATE of leaders’ preferences on group discus-
sion outcomes. The horizontal axis represents the (un-
known) treatment assignment probability, i.e., the true
proportion of leaders who prefer village roads to roads
between centers. Since we do not observe the sample pro-
portion corresponding to this probability Q, we analyze
how the sharp bounds vary as functions of Q.

In Figure 1, the area between the dotted lines rep-
resents the identification region under Assumptions 1
and 3, i.e., two assumptions that are fairly weak and gener-
ally applicable. The other lines represent the sharp bounds
under the sets of assumptions that include the two sub-
stantive assumptions analyzed in the previous section.
Specifically, Assumptions 1, 3, and 5 correspond to the
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FIGURE1 Estimated Sharp Bounds on the Average Treatment
Effect (ATE) under Various Combinations of

Assumptions for Question 7¢

Q7c: Villages (0) or Major Centers (1)?
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The figure shows the estimated sharp bounds under Assumptions 1, 3, and 5 (solid lines),
Assumptions 1, 3, and 4 (dashed lines) and Assumptions 1 and 3 (dotted lines) as functions
of the true treatment assignment probability, i.e., Q = Pr(Z = 1) (the horizontal axis). For
this question, Q represents the true population fraction of leaders who prefer to build roads
between major centers (Z; = 1) rather than village roads (Z] = 0). The binary outcome
variable represents whether a group decides that the resources should be spent on roads
between centers (Y; = 1) rather than village roads (Y; = 0). The solid circle represents the
case where there is no measurement error and the naive estimator given in equation (1) is

unbiased for the true ATE.

“persuasion scenario” and Assumptions 1, 3, and 4 to the
“incentive scenario” in the legend. The solid circle located
at the intersection of the two lines indicates the situation
where there is no measurement error and hence the naive
estimator provided in equation (1) is unbiased for the
true ATE.

The figure shows that the sharp lower bound is greater
than —1 for any value of the treatment assignment prob-
ability under Assumptions 1 and 3. This verifies Proposi-
tion 1, which states that either the upper or lower bound
(but never both) is always guaranteed to be informative
under these two assumptions. In the present case, it is
the lower bound that turns out to be informative, as the
condition Pr(Y; =1 Z; =1)>Pr(Y; =1]| Z; =0) is
satisfied (0.706 > 0.514).

As our analytical results indicated, little can be
learned under these two general assumptions for this
question as demonstrated by the wide estimated bounds
of the ATE, [—0.862, 1]. In contrast, under the strongest

set of assumptions, the estimated upper bound decreases
to 0.192, which occurs when the true treatment assign-
ment probability is approximately 0.493. The estimated
bounds under a slightly weaker set of assumptions (As-
sumptions 1, 3, and 4) are indicated by the dashed lines.
Notice that in this case additional assumptions greatly
improve the upper bound. However, they fail to improve
the lower bound, and the bounds are still wide overall. As
shown in Proposition 2, even with the relatively strong
assumptions, the bounds always contain zero, suggesting
that differential measurement error has serious conse-
quences in this case.

Another important feature of Figure 1 is that it shows
the estimated range of the true treatment assignment
probability that is consistent with Assumptions 1, 3, and
5. This range is calculated as [0.145, 0.739] using equa-
tion (6). As we explained earlier briefly, if we have some
auxiliary information about the range of possible values
of Q, we can judge the plausibility of our assumptions
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by examining whether these two ranges overlap with one
another. For weaker sets of assumptions, auxiliary infor-
mation about Q is still helpful because such information
generally leads to narrower bounds of the ATE.

In fact, in the democratic deliberations experiment,
there exists potentially useful auxiliary information from
a survey the original research team conducted on a ran-
dom sample from all the citizens (see Humphreys, Mas-
ters, and Sandbu 2006, 594-95 for more details). Al-
though the primary purpose of this portion of the study
was to examine differences between pre-forum and post-
forum individual attitudes, we may exploit the fact that
the survey asked roughly the same set of questions asin the
national forum. For example, according to Humphreys,
Masters, and Sandbu (2006), of the total of 266 individ-
uals who were interviewed prior to the forum meetings,
19% answered that they preferred improving major roads
as opposed to village roads. While the average preferences
of discussion leaders might differ from those of survey
respondents, we may still use this percentage as a rough
estimate of Q assuming that these two types of population
are similar in their preferences.” In this case, the estimated
bounds of the ATE are sharpened to [—0.751, —0.459],
which no longer contains zero. Alternatively, we can as-
sume that the leaders’ average preferences are within, say,
5% of those of the survey respondents. In that case, the
ATE falls between the range of [—0.801, —0.300], which
is somewhat wider but still does not contain zero. These
results suggest that the effect of leaders’ preferences on
group decision outcomes might have been negative for
this question. This is an opposite conclusion from the
one based on the naive estimate.

Figure 2 presents the results of the similar identifi-
cation analysis for the other four questions. First of all,
it is evident from the figure that inferences based only
on self-reported leader preferences could be misleading.
For example, the upper left panel shows that about 81.4%
of the discussion leaders stated they preferred spending
government resources on reliable hospitals as opposed to
local clinics. The ATE would be about as high as 0.495 if
this was the case. However, our analysis reveals that even
under the strongest set of assumptions, the true propor-
tion of such leaders (i.e., Q) could have been anywhere
between 0.286 and 0.971 and the true ATE as low as
—0.858. As shown empirically in Figure 2 and is formally
characterized in equation (6), this range is wide in all of
the questions we have analyzed (0.081 to 0.730 in Ques-

°Although we recognize that this is a rather tenuous assumption,
the analysis presented here serves as an illustration about how one
might exploit the existence of auxiliary information about Q.
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tion 4a, 0.172 to 0.895 in Question 7b, and 0.352 to 0.879
in Question 11a).

Not surprisingly, the possible range of the ATE is also
wide and always contains zero even under the strongest
assumptions we consider. For instance, the range is es-
timated to be —0.754 to 0.349 in Question 4a, which
asks whether government should spend more resources
on primary schools or secondary schools (upper right
panel). For the other two questions, however, the bounds
on the ATE are somewhat narrower and are suggestive
about the direction of the ATE. In the question about
road improvement versus public transportation (Ques-
tion 7b, lower left panel), the possible range of the ATE
is estimated to be [—0.999, 0.002], and the range turns
out to be [—0.945, 0.092] for the question about the use
of hypothetical community resource obtained as a wind-
fall (Question 11a, lower right panel). However, even in
these two cases, the ATE is still estimated to be positive
for some range of Q that includes the observed treatment
probability (0.197 and 0.704, respectively).

Again, auxiliary information about Q can be help-
ful to sharpen inference. For example, in the pre-forum
survey, the proportion of the respondents who preferred
hospitals over local clinics was approximately 58% (Ques-
tion 3), and the proportion of those who preferred
primary schools to secondary schools was about 28%
(Question 4a). Similarly, about 46% of the respondents
preferred to invest windfalls rather than receive them
now (Question 11a). If we use this information as es-
timates of Q in each question, the sharp bounds of the
ATE under Assumptions 1, 3, and 5 are significantly tight-
ened to [—0.561, —0.118] in Question 3, [—0.665, 0.180]
in Question 4a, and [—0.875, —0.439] in Question
11a.

In sum, our identification analysis of the democratic
deliberation experiment shows that the risk of differential
measurement error makes it difficult to draw a definitive
conclusion about the causal effects of leaders’ preferences
on group decision outcomes. The bounds on the ATE are
wide and always contain zero even under the strongest set
of assumptions we consider. Thus, to make informative
inferences, researchers must rely on available auxiliary
information.

Sensitivity Analysis

As demonstrated above, differential measurement error
leads to serious identification problems in the democratic
deliberation experiment, even after adding substantive as-
sumptions about the error-generating mechanism. At the
same time, these assumptions are strong and may lack
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FIGURE2 Estimated Sharp Upper and Lower Bounds on the Average Treatment Effect for the Other

Four Questions
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Each question is concerned about whether a leader (or a group after deliberation) prefers to spend resources on [Q3] clinics (coded as 0) or
hospitals (coded as 1); [Q4a] primary (coded as 0) or secondary (coded as 1) education; [Q7b] roads (coded as 0) or public transportation
(coded as 1); and [Q11a] to spend (coded as 0) or invest (coded as 1) windfalls. See the caption of Figure 1 for the interpretation of each

plot.

credibility. As an alternative approach, we now turn to
our proposed sensitivity analysis described earlier that
only maintains Assumptions 1 and 3 and does not rely
either on additional assumptions such as Assumptions 4
and 5'° or on the availability of auxiliary information. We
apply this analysis to the democratic deliberation experi-
ment by deriving the weakest condition under which the
conclusion based on the mismeasured variable remains
valid. In particular, we obtain the maximum probability
of misclassification that could exist in order for the leader
effect to be always positive. As already explained, this can

10We can also conduct the proposed sensitivity analysis under these
two additional assumptions. However, it turns out that the esti-
mated lower bounds, which we will focus on in the analysis below,
do not change in this experiment even if we incorporate them.

be done by deriving the bounds of the ATE for various
values of p defined in equation (10).
The results of this sensitivity analysis are shown in

Figure 3 . In each panel, the bounds of the ATE of leaders’
preferences (the vertical axis) are presented as a func-

tion of the maximum magnitude of measurement error
that may exist (the horizontal axis). Recall that p rep-
resents the maximal value of the total misclassification
error probability. Thus, when p = 0, there is no measure-
ment error and the true ATE equals the expected value
of its naive estimate given by the estimated value of T
(the dotted horizontal line). As we move toward the right
along the horizontal axis, however, we allow in calculat-
ing the bounds the leaders’ recorded preferences to differ
from their unobserved pre-deliberation preferences. Since
differential misclassification can become more frequent
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FIGURE 3  Sensitivity Analyses
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Each panel presents the estimated sharp upper and lower bounds on the average treatment effect (the vertical axis) as a function of p
in equation (10), which represents the maximum probability of misclassification that is assumed to exist (the horizontal axis) for each
question item. The dotted horizontal line in each panel represents the naive estimate of the ATE given in equation (1). The dashed vertical
line in the lower half of each panel indicates the maximum probability of misclassification that could exist between Z; and Z; in order for

the conclusion based on the mismeasured variable to be guaranteed valid.

as p increases, the bounds are widened toward the right
side of each panel. When p =1, they coincide with
the sharp bounds for Assumptions 1 and 3 reported in
Figure 2.

Since our primary interest is in the maximum value
of p that allows the true ATE to remain positive, we
focus on the lower bound for each question and ex-
amine where it crosses the zero line. This maximum
value of p is indicated by the dashed vertical line in
the lower half of each panel. For example, in the ques-
tion about local clinics versus reliable hospitals (Q3, up-
per left panel), the leaders’ recorded preferences must
not differ from their true pre-forum preferences more
than 14.2% of the time in order to conclude that they
influenced the discussion outcomes in the direction they
prefer.

These analyses give us another way to judge how plau-
sible the conclusions based on the mismeasured treatment
variables are in the presence of differential measurement
error. For instance, the maximum probability of misclas-
sification that may be present for Question 4a (upper right
panel) turns out to be somewhat high (24.6%) compared
to the other questions. This finding suggests that leaders
are likely to have influenced discussion outcomes for this
particular question when compared with the other ques-
tions. In particular, the leaders’ influence on outcomes
is substantially more likely to be positive for Question
4a than for Question 3, despite the fact that the naive
estimate of the effect is smaller for Question 4a (0.35)
than Question 3 (0.50). This illustrates that our sensitiv-
ity analysis gives an insight beyond the relative magni-
tude of causal estimate based on no measurement error
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assumption (though clearly both are closely related). In
contrast, for Questions 7b and 11a (bottom panels), the
maximum misclassification probability that may exist for
the leader influence being positive is as low as 0.2% and
5.6%, respectively. Thus, for these questions, we reject the
presence of leaders’ influence with much higher certainty
than the others. In sum, the proposed sensitivity analy-
sis can be used to formally assess the robustness of the
original conclusions.

Concluding Remarks

Previous methodological literature on measurement er-
ror has almost exclusively focused on the cases of nondif-
ferential measurement error where the error is assumed
to be independent of the outcome. Yet, differential mea-
surement error is common in retrospective studies where
measurements are taken after the outcome is realized.
Even in prospective studies, differential measurement er-
ror may arise if unobserved covariates are correlated with
both the outcome and the error.

Unfortunately, causal inference with the differential
misclassification of treatment is highly problematic be-
cause, as shown in this article, little can be learned with-
out reliance on strong assumptions or auxiliary informa-
tion. We show that under minimal assumptions the sharp
bounds of the ATE are informative but their width is large
and they always contain zero. Hence, further progress
to narrow the bounds requires additional assumptions
that are based on researchers’ substantive knowledge. We
demonstrate how to formulate such assumptions and
derive the sharp bounds under a fully nonparametric,
distribution-free setting. We characterize the identifica-
tion region as a function of the unknown treatment as-
signment probability. This will allow researchers to uti-
lize auxiliary information about this probability when it
is available.

Another methodological contribution of this article
is the new sensitivity analysis we propose. Given the se-
rious identification problem caused by differential mea-
surement error, our sensitivity analysis directly investi-
gates a weakest condition under which the conclusions
based on the mismeasured treatment variable remain
valid. In particular, we offer a method to identify the
maximum frequency of misclassification that may exist
in order to identify the sign of the ATE. Such an analysis
should help researchers evaluate the robustness of their
conclusions in the presence of differential measurement
error.

Political scientists have long used parametric regres-
sion models to analyze their data. The problem of this

KOSUKE IMAI AND TEPPEI YAMAMOTO

approach is that these commonly used regression mod-
els rely on statistical assumptions that are not neces-
sarily based on researchers’ substantive knowledge and
are often difficult to verify from the observed data. It
is well known that inferences based on such modeling
assumptions are necessarily sensitive and likely to yield
unreliable conclusions (e.g., Ho et al. 2007). To directly
address this issue, the nonparametric identification anal-
ysis advocated by Manski (1995, 2007) and others has
been widely applied across disciplines. Such an analy-
sis aims to first establish what can be learned from the
data alone and then clarify the role each additional as-
sumption plays in identifying the quantities of interest.
We contribute to this broad methodological literature
by deriving the identification region of the ATE in the
presence of differential measurement error and propos-
ing a new sensitivity analysis. We also show here its po-
tential for applications in political science by reexamin-
ing an important field experiment. We believe that this
kind of analysis allows political scientists to recognize
the degree to which the debates in this discipline de-
pend on extraneous assumptions, rather than on data
themselves.

Mathematical Appendix

A.1 No Identification Power
of Assumption 1

Proposition 3 (Uninformativeness of Assumption 1).
Suppose that Assumption 1 holds. Then,

1. The sharp bounds of the average treatment effect are

(-1, 1].

2. The upper bound equals 1 if and only if Pr(Z} =
1) =Pr(Y; =1).

3. The lower bound equals —1 if and only if Pr(Z} =
1) = Pr(Y; = 0).

Proof: Suppose that the ATE is equal to 1, or equiv-
alently Pr(Y; =1|Zf=1)=1and Pr(Y; =1]| ZF =
0) = 0. Then, by law of total probability, we have Pr(Y; =
. Zi=2)=Pr(Zf =y, Z = z) for y,z€ {0, 1}, and
the assumption implies no other restriction on the
joint probability. Thus, from this, Pr(Y; = 1) = Pr(Z; =
1) follows. Conversely, when Pr(Y; =1)=Pr(Z’ =
1), we have Pr(Zf = 1) =Pr(Y; = 1| Zf = 1)Pr(Z; =
1) +Pr(Y; =11 Zf =0)(1 —Pr(Z =1)). This equa-
tion is satisfied when Pr(Y; =1]Z=1)=1 and
Pr(Y; =11 ZF = 0) = 0 or equivalently 7* = 1. A proof
for the lower bound is similar. ]
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Remark: Thisresultisintuitive. For example, the ATE
equals 1 only if all units with Y; = 1(Y; = 0) actually
belong to the treatment (control) group, i.e., ¥; = Z}.
Thus, unless researchers have auxiliary information that
Pr(Zf =1) #Pr(Y; = 1) or Pr(Zf =1) # Pr(Y; =0),
Assumption 1 alone has no identifying power. g

A.2 Proof of Proposition 1

By Proposition 3, the sharp lower bound is un-
informative if and only if Pr(Zf =1) =Pr(Y; =0).
Therefore, under this condition, we have, by law
of total probability, Pr(Y; =1,2Z;=1)=Pr(Z; =1|
ZF = 0)Pr(Y; = 1), where the equality follows from
the fact that Pr(Y; =1 | ZF =1) =0,Pr(Y; =1 | ZF =
0) =1, and Pr(Zf =0) =Pr(Y; =1). By rearrange-
ment,weobtainPr(Z; =1| ZF =0) =Pr(Y; =1, Z; =
1)/Pr(Y; =1)=Pr(Z; =1]| Y; = 1). A similar calcula-
tion yields Pr(Z; =1| Zf =1)=Pr(Z; =1| Y; =0).
Therefore, Assumption 3 is equivalentto 1 — Pr(Z; =1 |
Y, =0 +Pr(Z;=1|Y,=1)<lorPr(Z;=1]|Y =
1) < Pr(Z; =1]Y; =0). This and Proposition 3 to-
gether establish the first part of Proposition 1. The
second part can be proved by starting from the con-
dition Pr(Zf = 1) = Pr(Y; = 1) and following similar
steps. O

A.3 Proof of Proposition 2

The sharp upper and lower bounds on 7* under Assump-
tions 1, 3, and 5 can be obtained as functions of Q by
solving the linear programming problem described in the
text. Rearranging the constraints and objective functions
given by equations (2), (3), (4) and (5), the problem can
be expressed in the following simpler form:

p
maximize/minimize T* = {1 — Py — ﬁ’
subjectto Ax = b, x>0,
1-Q 0 Q 0 0
0 0 1 1 0
where A= I L o0 o0 ol
0 1 1 0 1
_ Py _
doo Py,
bu 11— —
x= | b= Q
00 ) P )
(USS} 1— 10
" 1-Q
- 1 —
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and m denotes a slack variable such that 1 > 0. Note that
we modified the problem slightly by changing the strict
inequality in Assumption 3 to a weak inequality so that
the resulting bounds correspond to the supremum and
infinimum of the identification region rather than its
maximum and minimum. We solve the problem by enu-
merating all vertexes of the constraint polygon. (]
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