
Chapter 8

Causal Mediation Analysis Using R

K. Imai, L. Keele, D. Tingley, and T. Yamamoto

Abstract Causal mediation analysis is widely used across many disciplines to
investigate possible causal mechanisms. Such an analysis allows researchers
to explore various causal pathways, going beyond the estimation of simple
causal effects. Recently, Imai et al. (2008) [3] and Imai et al. (2009) [2] devel-
oped general algorithms to estimate causal mediation effects with the variety
of data types that are often encountered in practice. The new algorithms can
estimate causal mediation effects for linear and nonlinear relationships, with
parametric and nonparametric models, with continuous and discrete medi-
ators, and with various types of outcome variables. In this paper, we show
how to implement these algorithms in the statistical computing language R.
Our easy-to-use software, mediation, takes advantage of the object-oriented
programming nature of the R language and allows researchers to estimate
causal mediation effects in a straightforward manner. Finally, mediation
also implements sensitivity analyses which can be used to formally assess the
robustness of findings to the potential violations of the key identifying as-
sumption. After describing the basic structure of the software, we illustrate
its use with several empirical examples.
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8.1 Introduction

Causal mediation analysis is important for quantitative social science research
because it allows researchers to identify possible causal mechanisms, thereby
going beyond the simple estimation of causal effects. As social scientists,
we are often interested in empirically testing a theoretical explanation of a
particular causal phenomenon. This is the primary goal of causal mediation
analysis. Thus, causal mediation analysis has a potential to overcome the
common criticism of quantitative social science research that it only provides
a black-box view of causality.

Recently, Imai et al. (2008) [3] and Imai et al. (2009) [2] developed general
algorithms for the estimation of causal mediation effects with a wide variety
of data that are often encountered in practice. The new algorithms can es-
timate causal mediation effects for linear and nonlinear relationships, with
parametric and nonparametric models, with continuous and discrete media-
tors, and with various types of outcome variables. These papers [3, 2] also
develop sensitivity analyses which can be used to formally assess the robust-
ness of findings to the potential violations of the key identifying assumption.
In this paper, we describe the easy-to-use software, mediation, which allows
researchers to conduct causal mediation analysis within the statistical com-
puting language R [8]. We illustrate the use of the software with some of the
empirical examples presented in Imai et al. [2].

8.1.1 Installation and Updating

Before we begin, we explain how to install and update the software. First,
researchers need to install R which is available freely at the Comprehensive
R Archive Network (http://cran.r-project.org). Next, open R and then
type the following at the prompt:

R> install.packages("mediation")

Once mediation is installed, the following command will load the package:

R> library("mediation")

Finally, to update mediation to its latest version, try the following com-
mand:

R> update.packages("mediation")
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8.2 The Software

In this section, we give an overview of the software by describing its de-
sign and architecture. To avoid duplication, we do not provide the details of
the methods that are implemented by mediation and the assumptions that
underline them. Readers are encouraged to read Imai et al. [3, 2] for more
information about the methodology implemented in mediation.

8.2.1 Overview

The methods implemented via mediation rely on the following identification
result obtained under the sequential ignorability assumption of Imai et al. [3]:

δ̄ (t) =
∫ ∫

E(Yi ∣Mi = m,Ti = t,Xi = x){
dFMi∣Ti=1,Xi=x(m)−dFMi∣Ti=0,Xi=x(m)

}
dFXi (x), (8.1)

ζ̄ (t) =
∫ ∫

{E(Yi ∣Mi = m,Ti = 1,Xi = x)

−E(Yi ∣Mi = m,Ti = 0,Xi = x)} dFMi∣Ti=t,Xi=x(m)dFXi (x), (8.2)

where δ̄ (t) and ζ̄ (t) are the average causal mediation and average (natural)
direct effects, respectively, and (Yi,Mi,Ti,Xi) represents the observed outcome,
mediator, treatment, and pretreatment covariates. The sequential ignorabil-
ity assumption states that the observed mediator status is as if randomly
assigned conditional on the randomized treatment variable and the pretreat-
ment covariates. Causal mediation analysis under this assumption requires
two statistical models: one for the mediator f (Mi ∣ Ti,Xi) and the other for
the outcome variable f (Yi ∣ Ti,Mi,Xi). (Note that we use the empirical distri-
bution of Xi to approximate FXi .) Once these models are chosen and fitted by
researchers, then mediation will compute the estimated causal mediation
and other relevant estimates using the algorithms proposed in Imai et al. [2].
The algorithms also produce confidence intervals based on either a nonpara-
metric bootstrap procedure (for parametric or nonparametric models) or a
quasi-Bayesian Monte Carlo approximation (for parametric models).

Figure 8.1 graphically illustrates the three steps required for a mediation
analysis. The first step is to fit the mediator and outcome models using, for
example, regression models with the usual lm() or glm() functions. In the
second step, the analyst takes the output objects from these models, which
in Figure 8.1 we call model.m and model.y, and use them as inputs for the
main function, mediate(). This function then estimates the causal mediation
effects, direct effects, and total effect along with their uncertainty estimates.
Finally, sensitivity analysis can be conducted via the function medsens()

which takes the output of mediate() as an input. For the output of the
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Fig. 8.1 Diagram illustrating the use of the software mediation. Users first fit
the mediator and outcome models. Then, the function mediate() conducts causal
mediation analysis while medsens() implements sensitivity analysis. The functions
summary() and plot() help users interpret the results of these analyses.

mediate() function, a summary() method reports its key results in tabular
form. For the output of the medsens() function, there are both summary()

and plot() functions to display numerical and graphical summaries of the
sensitivity analysis, respectively.

8.2.2 Estimation of the Causal Mediation Effects

Estimation of the causal mediation effects is based on Algorithms 1 and 2 of
Imai et al. [2]. These are general algorithms in that they can be applied to any
parametric (Algorithm 1 or 2) or semi/nonparametric models (Algorithm 2)
for the mediator and outcome variables. Here, we briefly describe how these
algorithms have been implemented in mediation by taking advantage of the
object-oriented nature of the R programming language.

Algorithm 1 for Parametric Models

We begin by explaining how to implement Algorithm 1 of Imai et al. [2]
for standard parametric models. First, analysts fit parametric models for
the mediator and outcome variables. That is, we model the observed medi-
ator Mi given the treatment Ti and pretreatment covariates Xi. Similarly, we
model the observed outcome Yi given the treatment, mediator, and pretreat-
ment covariates. For example, to implement the Baron–Kenny procedure [1]
in mediation, linear models are fitted for both the mediator and outcome
models using the lm() command.



8 Causal Mediation Analysis Using R 133

The model objects from these two parametric models form the inputs
for the mediate() function. The user must also supply the names for the
mediator and outcome variables along with how many simulations should
be used for inference, and whether the mediator variable interacts with the
treatment variable in the outcome model. Given these model objects, the
estimation proceeds by simulating the model parameters based on their ap-
proximate asymptotic distribution (i.e., the multivariate normal distribution
with the mean equal to the parameter estimates and the variance equal to
the asymptotic variance estimate), and then computing causal mediation ef-
fects of interest for each parameter draw (e.g., using equations (8.1) and (8.2)
for average causal mediation and (natural) direct effects, respectively). This
method of inference can be viewed as an approximation to the Bayesian pos-
terior distribution due to the Bernstein–von Mises Theorem [6]. The advan-
tage of this procedure is that it is relatively computationally efficient (when
compared to Algorithm 2).

We take advantage of the object-oriented nature of the R programming
language at several steps in the function mediate(). For example, functions
like coef() and vcov() are useful for extracting the point and uncertainty es-
timates from the model objects to form the multivariate normal distribution
from which the parameter draws are sampled. In addition, the computation
of the estimated causal mediation effects of interest requires the prediction
of the mediator values under different treatment regimes as well as the pre-
diction of the outcome values under different treatment and mediator values.
This can be done by using model.frame() to set the treatment and/or me-
diator values to specific levels while keeping the values of the other variables
unchanged. We then use the model.matrix() and matrix multiplication with
the distribution of simulated parameters to compute the mediation and di-
rect effects. The main advantage of this approach is that it is applicable to a
wide range of parametric models and allows us to avoid coding a completely
separate function for different models.

Algorithm 2 for Non/Semiparametric Inference

The disadvantage of Algorithm 1 is that it cannot be easily applied to non
and semiparametric models. For such models, Algorithm 2, which is based on
nonparametric bootstrap, can be used although it is more computationally
intensive. Algorithm 2 may also be used for the usual parametric models.
Specifically, in Algorithm 2, we resample the observed data with replace-
ment. Then, for each of the bootstrapped samples, we fit both the outcome
and mediator models and compute the quantities of interest. As before, the
computation requires the prediction of the mediator values under different
treatment regimes as well as the prediction of the outcome values under differ-
ent treatment and mediator values. To take advantage of the object-oriented
nature of the R language, Algorithm 2 relies on the predict() function to
compute these predictions, while we again manipulate the treatment and me-
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diator status using the model.frame() function. This process is repeated a
large number of times and returns a bootstrap distribution of the mediation,
direct, and total effects. We use the percentiles of the bootstrap distribution
for confidence intervals. Thus, Algorithm 2 allows analysts to estimate medi-
ation effects with more flexible model specifications or to estimate mediation
effects for quantiles of the distribution.

8.2.3 Sensitivity Analysis

Causal mediation analysis relies on the sequential ignorability assumption
that cannot be directly verified with the observed data. The assumption im-
plies that the treatment is ignorable given the observed pretreatment con-
founders and that the mediator is ignorable given the observed treatment
and the observed pretreatment covariates. In order to probe the plausibility
of such a key identification assumption, analysts must perform a sensitiv-
ity analysis [9]. Unfortunately, it is difficult to construct a sensitivity analysis
that is generally applicable to any parametric or nonparametric model. Thus,
Imai et al. [3, 2] develop sensitivity analyses for commonly used parametric
models, which we implement in mediation.

The Baron–Kenny Procedure

Imai et al. [3] develop a sensitivity analysis for the Baron–Kenny procedure
and Imai et al. [2] generalize it to the linear structural equation model (LSEM)
with an interaction term. This general model is given by

Mi = α2 + β2Ti + ξ
⊤
2 Xi + εi2, (8.3)

Yi = α3 + β3Ti + γMi + κTiMi + ξ
⊤
3 Xi + εi3, (8.4)

where the sensitivity parameter is the correlation between εi2 and εi3, which
we denote by ρ. Under sequential ignorability, ρ is equal to zero and thus
the magnitude of this correlation coefficient represents the departure from
the ignorability assumption (about the mediator). Note that the treatment is
assumed to be ignorable as it would be the case in randomized experiments
where the treatment is randomized but the mediator is not. Theorem 2 of [2]
shows how the average causal mediation effects change as a function of ρ.

To obtain the confidence intervals for the sensitivity analysis, we apply
the following iterative algorithm to equations (8.3) and (8.4) for a fixed value
of ρ. At the tth iteration, given the current values of the coefficients, i.e.,

θ (t) = (α
(t)
2 ,β

(t)
2 ,ξ

(t)
2 , . . .), and a given error correlation ρ, we compute the

variance–covariance matrix of (εi2,εi3), which is denoted by Σ (t). The matrix

is computed by setting σ
(t)
j

2
= ∣∣ε̂(t)

j ∣∣2/(n−L j) and σ
(t)
23 = ρσ

(t)
2 σ

(t)
3 , where ε̂

(t)
j
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is the residual vector and L j is the number of coefficients for the mediator
model ( j = 2) and the outcome model ( j = 3) at the tth iteration. We then
update the parameters via generalized least squares, i.e.,

θ
(t+1) = {V⊤(Σ

(t)−1⊗ In)V}−1V⊤(Σ
(t)−1⊗ In)W

where V =

[
1 T X 0 0 0 0 0
0 0 0 1 T M T M X

]
, W =

[
M
Y

]
, T = (T1, . . . ,Tn)⊤,

M = (M1, . . . ,Mn)⊤ and Y = (Y1, . . . ,Yn)⊤ are column vectors of length n, and
X = (X1, . . . ,Xn)⊤ are the (n×K) matrix of observed pretreatment covari-
ates, and ⊗ represents the Kronecker product. We typically use equation-
by-equation least squares estimates as the starting values of θ and iterate
these two steps until convergence. This is essentially an application of the
iterative feasible generalized least square algorithm of the seemingly unre-
lated regression [12], and thus the asymptotic variance of θ̂ is given by
Var(θ̂) = {V⊤(Σ−1⊗ In)V}−1. Then, for a given value of ρ, the asymptotic
variance of the estimated average causal mediation effects is found, for ex-
ample, by the Delta method and the confidence intervals can be constructed.

The Binary Outcome Case

The sensitivity analysis for binary outcomes parallels the case when both
the mediator and outcome are continuous. Here, we assume that the model
for the outcome is a probit regression. Using a probit regression for the out-
come allows us to assume the error terms are jointly normal with a possibly
nonzero correlation ρ. Imai et al. [2] derive the average causal mediation ef-
fects as a function of ρ and a set of parameters that are identifiable due to
randomization of the treatment. This lets us use ρ as a sensitivity parameter
in the same way as in the Baron–Kenny procedure. For the calculation of
confidence intervals, we rely on the quasi-Bayesian approach of Algorithm 1
by approximating the posterior distribution with the sampling distribution
of the maximum likelihood estimates.

The Binary Mediator Case

Finally, a similar sensitivity analysis can also be conducted in a situation
where the mediator variable is dichotomous and the outcome is continuous.
In this case, we assume that the mediator can be modeled as a probit re-
gression where the error term is independently and identically distributed as
standard normal distribution. A linear normal regression with error variance
equal to σ2

3 is used to model the continuous outcome variable. We further
assume that the two error terms jointly follow a bivariate normal distribution
with mean zero and covariance ρσ3. Then, as in the other two cases, we use
the correlation between the two error terms ρ as the sensitivity parameter.
Imai et al. [2] show that under this setup, the causal mediation effects can
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be expressed as a function of the model parameters that can be consistently
estimated given a fixed value of ρ. Uncertainty estimates are computed based
on the quasi-Bayesian approach, as in the binary outcome case. The results
can be graphically summarized via the plot() function in a manner similar
to the other two cases.

Alternative Interpretations Based on R2

The main advantage of using ρ as a sensitivity parameter is its simplicity.
However, applied researchers may find it difficult to interpret the magnitude
of this correlation coefficient. To overcome this limitation, Imai et al. [3]
proposed alternative interpretations of ρ based on the coefficients of deter-
mination or R2 and Imai et al. [2] extended them to the binary mediator and
binary outcome cases. In that formulation, it is assumed that there exists a
common unobserved pretreatment confounder in both mediator and outcome
models. Applied researchers are then required to specify whether the coeffi-
cients of this unobserved confounder in the two models have the same sign or
not; i.e., sgn(λ2λ3) = 1 or −1 where λ2 and λ3 are the coefficients in the me-
diator and outcome models, respectively. Once this information is provided,
the average causal mediation effect can be expressed as the function of “the
proportions of original variances explained by the unobserved confounder”
where the original variances refer to the variances of the mediator and the
outcome (or the variance of latent variable in the case of binary dependent
variable). Alternatively, the average causal mediation effect can also be ex-
pressed in terms of “the proportions of the previously unexplained variances
explained by the unobserved confounder” (see [1] for details). These alterna-
tive interpretations allow researchers to quantify how large the unobserved
confounder must be (relative to the observed pretreatment covariates in the
model) in order for the original conclusions to be reversed.

8.2.4 Current Limitations

Our software, mediation, is quite flexible and can handle many of the model
types that researchers are likely to use in practice. Table 8.1 categorizes the
types of the mediator and outcome variables and lists whether mediation
can produce the point and uncertainty estimates of causal mediation effects.
For example, while mediation can estimate average causal mediation ef-
fects when the mediator is ordered and the outcome is continuous, it has
not yet been extended to other cases involving ordered variables. In each
situation handled by mediation, it is possible to have an interaction term
between treatment status and the mediator variable, in which case the esti-
mated quantities of interest will be reported separately for the treatment and
control groups.
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Table 8.1 The types of data that can be currently handled by mediation for the
estimation of causal mediation effects

Outcome Variable Types

Mediator Types Continuous Ordered Binary

Continuous Yes No Yes

Ordered Yes No No

Binary Yes No Yes

Table 8.2 The types of data that can be currently handled by mediation for sensi-
tivity analysis. For continuous variables, the linear regression model is assumed. For
binary variables, the probit regression model is assumed

Outcome Variable Types

Mediator Types Continuous Ordered Binary

Continuous Yes No Yes

Ordered No No No

Binary Yes No No

Our software provides a convenient way to probe the sensitivity of results
to potential violations of the ignorability assumption for certain model types.
The sensitivity analysis requires the specific derivations for each combination
of models, making it difficult to develop a general sensitivity analysis method.
As summarized in Table 8.2, mediation can handle several cases that are
likely to be encountered by applied researchers. When the mediator is contin-
uous, then sensitivity analysis can be conducted with continuous and binary
outcome variables. In addition, when the mediator is binary, sensitivity anal-
ysis is available for continuous outcome variables. For sensitivity analyses
that combine binary or continuous mediators and outcomes, analysts must
use a probit regression model with a linear regression model. This allows for
jointly normal errors in the analysis. Unlike the estimation of causal medi-
ation effects, sensitivity analysis with treatment/mediator interactions can
only be done for the continuous outcome/continuous mediator and contin-
uous outcome/binary mediator cases. In the future, we hope to expand the
range of models that are available for sensitivity analysis.
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8.3 Examples

Next, we provide several examples to illustrate the use of mediation for the
estimation of causal mediation effects and sensitivity analysis. The data used
are available as part of the package so that readers can replicate the results
reported below. We demonstrate the variety of models that can be used for
the outcome and mediating variables.

Before presenting our examples, we load the mediation library and the
example data set included with the library.

R> library("mediation")

mediation: R Package for Causal Mediation Analysis

Version: 2.0

R> data("jobs")

This dataset is from the Job Search Intervention Study (JOBS II) [10]. In the
JOBS II field experiment, 1,801 unemployed workers received a pre-screening
questionnaire and were then randomly assigned to treatment and control
groups. Those in the treatment group participated in job-skills workshops.
Those in the control condition received a booklet describing job-search tips. In
follow-up interviews, two key outcome variables were measured: a continuous
measure of depressive symptoms based on the Hopkins Symptom Checklist
(depress2), and a binary variable representing whether the respondent had
become employed (work1). In the JOBS II data, a continuous measure of
job-search self-efficacy represents a key mediating variable (job_seek). In
addition to the outcome and mediators, the JOBS II data also include the
following list of baseline covariates that were measured prior to the admin-
istration of the treatment: pretreatment level of depression (depress1), edu-
cation (educ), income, race (nonwhite), marital status (marital), age, sex,
previous occupation (occp), and the level of economic hardship (econ_hard).

8.3.1 Estimation of Causal Mediation Effects

The Baron–Kenny Procedure

We start with an example when both the mediator and the outcome are
continuous. In this instance, the results from either algorithm will return
point estimates essentially identical to the usual Baron and Kenny proce-
dure though the quasi-Bayesian or nonparametric bootstrap approximation
is used. Using the JOBS II data, we first estimate two linear regressions for
both the mediator and the outcome using the lm() function.

R> model.m <- lm(job_seek ˜ treat + depress1 + econ_hard

+ sex + age + occp + marital + nonwhite + educ + income,
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data = jobs)

R> model.y <- lm(depress2 ˜ treat + job_seek + depress1

+ econ_hard + sex + age + occp + marital + nonwhite

+ educ + income, data = jobs)

These two model objects, model.m and model.y, become the arguments
for the mediate() function. The analyst must take some care with missing
values before estimating the models above. While model functions in R handle
missing values in the data using the usual listwise deletion procedures, the
functions in mediation assume that missing values have been removed from
the data before the estimation of these two models. Thus the data for the
two models must have identical observations sorted in the same order with all
missing values removed. The R function na.omit() can be used to remove
missing values from the data frame.

In the first call to mediate() below, we specify boot = TRUE to call the
nonparametric bootstrap with 1000 resamples (sims = 1000). When this op-
tion is set to FALSE in the second call, inference proceeds via the quasi-
Bayesian Monte Carlo approximation using Algorithm 1 rather than Algo-
rithm 2. We must also specify the variable names for the treatment indicator
and the mediator variable using treat and mediator, respectively.

R> out.1 <- mediate(model.m, model.y, sims = 1000,

boot = TRUE, treat = "treat", mediator = "job_seek")

R> out.2 <- mediate(model.m, model.y, sims = 1000,

treat = "treat", mediator = "job_seek")

The objects from a call to mediate(), i.e., out.1 and out.2 above, are lists
which contain several different quantities from the analysis. For example,
out.1$d0 returns the point estimate for the average causal mediation effect
based on Algorithm 1. The help file contains a full list of values that are con-
tained in mediate() objects. The summary() function prints out the results
of the analysis in tabular form:

R> summary(out.1)

Causal Mediation Analysis

Confidence Intervals Based on Nonparametric Bootstrap

Mediation Effect: -0.01593 95% CI -0.031140 -0.002341

Direct Effect: -0.03125 95% CI -0.1045 0.0408

Total Effect: -0.04718 95% CI -0.11996 0.02453

Proportion of Total Effect via Mediation:

0.2882 95% CI -2.412 3.419

R> summary(out.2)

.
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.

Output Omitted

The output from the summary() function displays the estimates for the aver-
age causal mediation effect, direct effect, total effect, and proportion of total
effect mediated. The first column displays the quantity of interest, the second
column displays the point estimate, and the other columns present the 95%
confidence intervals. Researchers can then easily report these point estimates
and corresponding uncertainty estimates in their work. In this case, we find
that job search self-efficacy mediated the effect of the treatment on depres-
sion in the negative direction. This effect, however, was small with a point
estimate of −.016 but the 95% confidence intervals (−.031,−.002) still do not
contain 0.

The Baron–Kenny Procedure with the Interaction Term

Analysts can also allow the causal mediation effect to vary with treatment
status. Here, the model for the outcome must be altered by including an
interaction term between the treatment indicator, treat, and the mediator
variable, job_seek:

R> model.y <- lm(depress2 ˜ treat + job_seek

+ treat:job_seek + depress1 + econ_hard + sex

+ age + occp + marital + nonwhite + educ

+ income, data = jobs)

Users should note that under our current implementation, the interac-
tion term must be specified in the form of treat.name:med.name where
treat.name and med.name are the names of the treatment variable and me-
diator in the model, respectively. Then, a call is again made to mediate(),
but now the option INT = TRUE must be specified:

R> out.3 <- mediate(model.m, model.y, sims = 1000,

boot = TRUE, INT = TRUE, treat = "treat", mediator =

"job_seek")

R> out.4 <- mediate(model.m, model.y, sims=1000,

INT = TRUE, treat = "treat", mediator =

"job_seek")

R> summary(out.3)

Causal Mediation Analysis

Confidence Intervals Based on Nonparametric Bootstrap

Mediation Effect_0: -0.02056 95% CI -0.0425 -0.0038

Mediation Effect_1: -0.01350 95% CI -0.0281 -0.0023

Direct Effect_0: -0.03318 95% CI -0.10496 0.03592
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Direct Effect_1: -0.02611 95% CI -0.09612 0.04454

Total Effect: -0.04668 95% CI -0.11594 0.02135

Proportion of Total Effect via Mediation:

0.3053 95% CI -3.578 3.593

R> summary(out.4)

.

.

Output Omitted

Again using the summary() function provides a table of the results. Now esti-
mates for the mediation and direct effects correspond to the levels of the treat-
ment and are printed as such in the tabular summary. In this case, the medi-
ation effect under the treatment condition, listed as Mediation Effect_1, is
estimated to be −.014 while the mediation effect under the control condition,
Mediation Effect_0, is −.021.

Use of Non/Semiparametric Regression

The flexibility of mediation becomes readily apparent when we move
beyond standard linear regression models. For example, we might suspect
that the mediator has a nonlinear effect on the outcome. Generalized Additive
Models (GAMs) allow analysts to use splines for flexible nonlinear fits. This
presents no difficulties for the mediate() function. We model the mediator
as before, but we alter the outcome model using the gam() function from the
mgcv library.

R> library(mgcv)

This is mgcv 1.4-1

R> model.m <- lm(job_seek ˜ treat + depress1

+ econ_hard + sex + age + occp + marital

+ nonwhite + educ + income, data = jobs)

R> model.y <- gam(depress2 ˜ treat + s(job_seek,

bs = "cr") + depress1 + econ_hard + sex + age

+ occp + marital + nonwhite + educ + income,

data = jobs)

In this case we fit a Generalized Additive Model for the outcome variable, and
allow the effect of the job_seek variable to be nonlinear and determined by
the data. This is done by using the s() notation which allows the fit between
the mediator and the outcome to be modeled with a spline. Using the spline
for the fit allows the estimate for the mediator on the outcome to be a series
of piecewise polynomial regression fits. This semiparametric regression model
is a more general version of nonparametric regression models such as lowess.
The model above allows the estimate to vary across the range of the predictor
variable. Here, we specify the model with a cubic basis function (bs = "cr")
for the smoothing spline and leave the smoothing selection to be done at the



142 K. Imai, L. Keele, D. Tingley, and T. Yamamoto

program defaults which is generalized cross-validation. Fully understanding
how to fit such models is beyond the scope here. Interested readers should
consult Wood 2006 [11] for full technical details and Keele 2008 [5] provides
coverage of these models from a social science perspective.

The call to mediate() with a gam() fit remains unchanged except that
when the outcome model is a semiparametric regression only the nonpara-
metric bootstrap is valid for calculating uncertainty estimates, i.e., boot =

TRUE.

R> out.5 <- mediate(model.m, model.y, sims = 1000,

boot = TRUE, treat = "treat", mediator = "job_seek")

R> summary(out.5)

.

.

Output Omitted

The model for the mediator can also be modeled with the gam() function
as well. The gam() function also allows analysts to include interactions; thus
analysts can still allow the mediation effects to vary with treatment status.
This simply requires altering the model specification by using the by option in
the gam() function and using two separate indicator variables for treatment
status. To fit this model we need one variable that indicates whether the
observation was in the treatment group and a second variable that indicates
whether the observation was in the control group. To allow the mediation
effect to vary with treatment status, the call to gam() takes the following
form:

R> model.y <- gam(depress2 ˜ treat + s(job_seek, by = treat)

+ s(job_seek, by = control) + depress1 + econ_hard + sex

+ age + occp + marital + nonwhite + educ + income,

data = jobs)

In this case, we must also alter the options in the mediate() function by
specifying INT = TRUE and provide the variable name for the control group
indicator using the control option.

R> out.6 <- mediate(model.m, model.y, sims = 1000,

boot = TRUE, INT = TRUE, treat = "treat",

mediator = "job_seek", control = "control")

R> summary(out.6)

Causal Mediation Analysis

Confidence Intervals Based on Nonparametric Bootstrap

Mediation Effect_0: -0.02328 95% CI -0.059138 0.006138
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Mediation Effect_1: -0.01622 95% CI -0.041565 0.004363

Direct Effect_0: -0.01408 95% CI -0.09369 0.05672

Direct Effect_1: -0.007025 95% CI -0.08481 0.06114

Total Effect: -0.0303 95% CI -0.13065 0.04744

Proportion of Total Effect via Mediation:

0.3395% CI -8.514 4.391

As the reader can see, despite the fact that the mediator was specified as
a nonparametric function, one still receives point estimates and confidence
intervals for the mediation effect across each treatment level. In the table,
Mediation Effect_0 and Direct Effect_0 are the mediation and direct
effects respectively under the control condition, while Mediation Effect_1

and Direct Effect_1 are the mediation and direct effects under treatment.

Quantile Causal Mediation Effects

Researchers might also be interested in modeling mediation effects for
quantiles of the outcome. Quantile regression allows for a convenient way to
model the quantiles of the outcome distribution while adjusting for a variety
of covariates [7]. For example, a researcher might be interested in the 0.5
quantile (i.e., median) of the distribution. This also presents no difficulties
for the mediate() function. Again for these models, uncertainty estimates
are calculated using the nonparametric bootstrap. To use quantile regression,
we load the quantreg library and model the median of the outcome, though
other quantiles are also permissible. Analysts can also relax the no-interaction
assumption for the quantile regression models as well. Below we estimate the
mediator with a standard linear regression, while for the outcome we use
rq() to model the median.

R> library(quantreg)

Loading required package: SparseM

Package SparseM (0.78) loaded.

To cite, see citation("SparseM")

Package quantreg (4.26) loaded.

To cite, see citation("quantreg")

R> model.m <- lm(job_seek ˜ treat + depress1 + econ_hard

+ sex + age + occp + marital + nonwhite + educ + income,

data = jobs)

R> model.y <- rq(depress2 ˜ treat + job_seek + depress1

+ econ_hard + sex + age + occp + marital + nonwhite

+ educ + income, tau= 0.5, data = jobs)

R> out.7 <- mediate(model.m, model.y, sims = 1000,

boot = TRUE, treat = "treat", M = "job_seek")

R> summary(out.7)
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Causal Mediation Analysis

Confidence Intervals Based on Nonparametric Bootstrap

Mediation Effect: -0.01470 95% CI -0.027235 -0.001534

Direct Effect: -0.02489 95% CI -0.09637 0.04309

Total Effect: -0.03959 95% CI -0.11523 0.02857

Proportion of Total Effect via Mediation:

0.3337 95% CI -3.069 1.902

where the summary() command gives the estimated median causal mediation
effect along with the estimates for the other quantities of interest.

It is also possible to estimate mediation effects for quantiles of the outcome
other than the median. This is done simply by specifying a different outcome
quantile in the quantile regression model. For example, if the 10th percentile
of the outcome were of interest, then the user can change the tau option,

R> model.y <- rq(depress2 ˜ treat + job_seek + depress1

+ econ_hard + sex + age + occp + marital + nonwhite

+ educ + income, tau = 0.1, data = jobs)

Furthermore, it is straightforward to loop over a set of quantiles and graph
the mediation effects for a range of quantiles, as done in [2].

Discrete Mediator and Outcome Data

Often analysts use measures for the mediator and outcome that are dis-
crete. For standard methods, this has presented a number of complications
requiring individually tailored techniques. The mediation software, however,
can handle a number of different discrete data types using the general algo-
rithms developed in Imai et al. [2]. For example, one outcome of interest in the
JOBS II study is a binary indicator (work1) for whether the subject became
employed after the training sessions. To estimate the mediation effect, we
simply use a probit regression instead of a linear regression for the outcome
and then call mediate() as before:

R> model.m <- lm(job_seek ˜ treat + depress1 + econ_hard

+ sex + age + occp + marital + nonwhite + educ + income,

data = jobs)

R> model.y <- glm(work1 ˜ treat + job_seek + depress1

+ econ_hard + sex + age + occp + marital + nonwhite + educ

+ income, family = binomial(link = "probit"), data = jobs)

R> out.8 <- mediate(model.m, model.y, sims = 1000,

boot = TRUE, treat = "treat", mediator = "job_seek")

R> out.9 <- mediate(model.m, model.y, sims = 1000,

treat = "treat", mediator = "job_seek")
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R> summary(out.8)

.

.

Output Omitted

R> summary(out.9)

Causal Mediation Analysis

Quasi-Bayesian Confidence Intervals

Mediation Effect: 0.003780 95% CI -0.0005248 0.0109583

Direct Effect: 0.05573 95% CI -0.007416 0.119900

Total Effect: 0.05951 95% CI -0.004037 0.123071

Proportion of Total Effect via Mediation:

0.05804 95% CI -0.2405 0.4498

In the table printed by the summary() function, the estimated average
causal mediation effect along with the quasi-Bayesian confidence interval are
printed on the first line followed by the direct and total effects, and the
proportion of the total effect due to mediation. It is also possible to use a logit
model for the outcome instead of a probit model. However, we recommend the
use of a probit model because our implementation of the sensitivity analysis
below requires a probit model for analytical tractability.

The mediator can also be binary or an ordered measure as well. This simply
requires modeling the mediator with either a probit or ordered probit model.
For demonstration purposes, the jobs data contains two variables, job_dich
and job_disc, which are recoded versions of job_seek. The first measure
is simply the continuous scale divided at the median into a binary variable.
The second measure, job_disc, recodes the continuous scale into a discrete
four-point scale. We emphasize that this is for demonstration purposes only,
and analysts in general should not recode continuous measures into discrete
measures. Estimating mediation effects with a binary mediator is quite similar
to the case above with a binary outcome. We simply now use a probit model
for the mediator and a linear regression for the outcome:

R> model.m <- glm(job_dich ˜ treat + depress1 + econ_hard

+ sex + age + occp + marital + nonwhite + educ + income,

data = job, family = binomial(link = "probit"))

R> model.y <- lm(depress2 ˜ treat + job_dich + treat:job_dich

+ depress1 + econ_hard + sex + age + occp + marital

+ nonwhite + educ + income, data = jobs)

In this example we allow the effect of the mediator to vary with treatment
status. The user now calls mediate() and can use either the quasi-Bayesian
approximation or nonparametric bootstrap.
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R> out.10 <- mediate(model.m, model.y, sims = 1000,

boot=TRUE, treat="treat", mediator="job_dich", INT=TRUE)

R> out.11 <- mediate(model.m, model.y, sims = 1000,

treat = "treat", mediator = "job_dich", INT = TRUE)

R> summary(out.10)

.

.

Output Omitted

R> summary(out.11)

Causal Mediation Analysis

Quasi-Bayesian Confidence Intervals

Mediation Effect_0: -0.01809 95% CI -0.035290 -0.005589

Mediation Effect_1: -0.01968 95% CI -0.034518 -0.007263

Direct Effect_0: -0.02849 95% CI -0.1008 0.0393

Direct Effect_1: -0.03009 95% CI -0.10111 0.03791

Total Effect: -0.04817 95% CI -0.11962 0.01729

Proportion of Total Effect via Mediation:

0.3431 95% CI -3.330 3.756

In the table, we see that Mediation Effect_0 is the mediation effect under
the control condition, while Mediation Effect_1 is the mediation effect un-
der the treatment condition. The same notation applies to the direct effects.
As the reader can see, the output also indicates which algorithm is used for
the 95% confidence intervals.

When the mediator is an ordered variable, we switch to an ordered probit
model for the mediator. In R, the polr() function in the MASS library provides
this functionality. The MASS library is automatically loaded with mediation
so the polr() function is readily available to users. Thus, we fit the outcome
and mediator models below:

R> model.m <- polr(job_disc ˜ treat + depress1 + econ_hard

+ sex + age + occp + marital + nonwhite + educ + income,

data = jobs, method = "probit", Hess = TRUE)

R> model.y <- lm(depress2 ˜ treat + job_disc + depress1

+ econ_hard + sex + age + occp + marital + nonwhite

+ educ + income, data = jobs)

The reader should note that in the call to polr() the Hess = TRUE needs
to be specified to use the quasi-Bayesian approximation in the mediate()

function. Once we have estimated these two models, analysis proceeds as
before:

R> out.12 <- mediate(model.m, model.y, sims = 1000,

boot = TRUE, treat = "treat", mediator = "job_disc")

R> out.13 <- mediate(model.m, model.y, sims = 1000,
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treat = "treat", mediator = "job_disc")

R> summary(out.12)

.

.

Output Omitted

R> summary(out.13)

.

.

Output Omitted

Again, for any of these data types, analysts can relax the no-interaction
assumption as before by including the interaction between treatment and the
mediator variable in the outcome model and using the INT = TRUE option.

8.3.2 Sensitivity Analysis

Once analysts have estimated mediation effects, they should always explore
how robust their finding is to the ignorability assumption. The medsens()

function allows analysts to conduct sensitivity analyses for mediation ef-
fects. Next, we provide a demonstration of the functionality for the sensitiv-
ity analysis. Currently, mediation can conduct sensitivity analyses for the
continuous–continuous case, the binary–continuous case, and the continuous–
binary case.

The Baron–Kenny Procedure

As before, one must first fit models for the mediator and outcome and
then pass these model objects through the mediate function:

R> model.m <- lm(job_seek ˜ treat + depress1 + econ_hard

+ sex + age + occp + marital + nonwhite + educ + income,

data = jobs)

R> model.y <- lm(depress2 ˜ treat + job_seek + depress1

+ econ_hard + sex + age + occp

+ marital + nonwhite + educ + income, data = jobs)

R> med.cont <- mediate(model.m, model.y, sims=1000,

treat = "treat", mediator = "job_seek")

Once the analyst estimates the mediation effects, the output from the
mediate() function becomes the argument for medsens(), which is the
workhorse function. The medsens() function recognizes the options specified
in the mediate() function and thus there is no need to specify the treat,
mediator, or INT options.
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R> sens.cont <- medsens(med.cont, rho.by = 0.05)

The rho.by option specifies how finely incremented the parameter ρ is for the
sensitivity analysis. Using a coarser grid for ρ speeds up estimation consid-
erably, but this comes at the cost of estimating the robustness of the original
conclusion only imprecisely.

After running the sensitivity analysis via medsens(), the summary() func-
tion can be used to produce a table with the values of ρ for which the confi-
dence interval contains zero. This allows the analyst to immediately see the
approximate range of ρ where the sign of the causal mediation effect is inde-
terminate. The second section of the table contains the value of ρ for which
the mediation effect is exactly zero, which in this application is −0.19. The
table also presents coefficients of determination that correspond to the criti-
cal value of ρ where the mediation effect is zero. First, R∗2

MR∗2
Y is the product

of coefficients of determination which represents the proportion of the pre-
viously unexplained variance in the mediator and outcome variables that is
explained by an unobservable pretreatment unconfounder. An alternative for-
mulation is in terms of the proportion of the original variance explained by
an unobserved confounder, which we denote as R̃2

MR̃2
Y .

R> summary(sens.cont)

Mediation Sensitivity Analysis

Sensitivity Region

Rho Med. Eff. 95% CI 95% CI Rˆ2_M*Rˆ2_Y* Rˆ2_M˜Rˆ2_Y

Lower Upper

[1,] -0.25 0.0056 -0.0008 0.0120 0.0625 0.0403

[2,] -0.20 0.0012 -0.0035 0.0058 0.0400 0.0258

[3,] -0.15 -0.0032 -0.0084 0.0020 0.0225 0.0145

[4,] -0.10 -0.0074 -0.0150 0.0001 0.0100 0.0064

Rho at which ACME = 0: -0.1867

Rˆ2_M*Rˆ2_Y* at which ACME = 0: 0.0349

Rˆ2_M˜Rˆ2_Y˜ at which ACME = 0: 0.0225

The table above presents the estimated mediation effect along with its confi-
dence interval for each value of ρ. The reader can verify that when ρ is equal
to zero, the reported mediation effect matches the estimate produced by the
mediate() function. For other values of ρ, the mediation effect is calculated
under different levels of unobserved confounding.

The information from the sensitivity analysis can also be summarized
graphically using the plot() function. First, passing the medsens object to
plot() and specifying the sens.par option to "rho", i.e.,
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R> plot(sens.cont, sens.par = "rho")

produces the left-hand side of Figure 8.2. In the plot, the dashed horizontal
line represents the estimated mediation effect under the sequential ignora-
bility assumption, and the solid line represents the mediation effect under
various values of ρ. The gray region represents the 95% confidence bands.

Similarly, we can also plot the sensitivity analysis in terms of the coeffi-
cients of determination as discussed above. Here we specify sens.par option
to "R2". We also need to specify two additional pieces of information. First,
r.type option tells the plot function whether to plot R∗2

MR∗2
Y or R̃2

MR̃2
Y . To

plot the former r.type is set to 1 and to plot the latter r.type is set to 2.
Finally, the sign.prod option specifies the sign of the product of the coef-
ficients of the unobserved confounder in the mediator and outcome models.
This product indicates whether the unobserved confounder affects both me-
diator and outcome variables in the same direction (1) or different directions
(-1), thereby reflecting the analyst’s expectation about the nature of con-
founding.

For example, the following command produces the plot representing the
sensitivity of estimates with respect to the proportion of the original variances
explained by the unobserved confounder when the confounder is hypothesized
to affect the mediator and outcome variables in opposite directions.

R> plot(sens.cont, sens.par = "R2", r.type = 2,

sign.prod = -1)

The resulting plot is shown on the right-hand side of Figure 8.2. Each contour
line represents the mediation effect for the corresponding values of R̃2

M and R̃2
Y .

For example, the 0 contour line corresponds to values of the product R̃2
MR̃2

Y
such that the average causal mediation effect is 0. As reported in the table,
even a small proportion of original variance unexplained by the confounder,
.02%, produces mediation effects of 0. Accordingly, the right-hand side of
Figure 8.2 shows how increases in R̃2

MR̃2
Y (moving from the lower left to upper

right) produce positive mediation effects.
For both types of sensitivity plots, the user can specify additional options

available in the plot function such as alternative title (main) and axis labels
(xlab, ylab) or manipulate common graphical options (e.g., xlim).

Binary Outcome

The medsens() function also extends to analyses where the mediator is
binary and the outcome is continuous, as well as when the mediator is con-
tinuous and the outcome is binary. If either variable is binary, medsens()
takes an additional argument. For example, recall the binary outcome model
estimated earlier:

R> model.y <- glm(work1 ˜ treat + job_seek + depress1

+ econ_hard + sex + age + occp + marital + nonwhite
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Fig. 8.2 Sensitivity analysis with continuous outcome and mediator.

+ educ + income, family = binomial(link = "probit"),

data = jobs)

R> med.bout <- mediate(model.m, model.y, sims = 1000,

treat = "treat", mediator = "job_seek")

The call to medsens() works as before, with the output from the mediate()
function passed through medsens().

R> sens.bout <- medsens(med.bout, rho.by = 0.05,

sims = 1000)

The sims option provides control over the number of draws in the parametric
bootstrap procedure which is used to compute confidence bands. When either
the mediator or outcome is binary, the exact values of sensitivity parameters
where the mediation effects are zero cannot be analytically obtained as in the
fully continuous case (see [3] Section 4). Thus, this information is reported
based on the signs of the estimated mediation effects under various values of ρ

and corresponding coefficients of determination. The usage of the summary()

function, however, remains identical to the fully continuous case in that the
output table contains the estimated mediation effects and the corresponding
values of ρ for which the confidence region contains zero.

As in the case with continuous mediator and outcome variables, we can plot
the results of the sensitivity analysis. The following code produces Figure 8.3.

R> plot(sens.bout, sens.par = "rho")

R> plot(sens.bout, sens.par = "R2", r.type = 2,

sign.prod = 1)

On the left-hand side we plot the average causal mediation effects in terms of
ρ, while we use R̃2

M and R̃2
Y on the right-hand side. In the ρ plot, the dashed

line represents the estimated mediation effect under sequential ignorability,
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Fig. 8.3 Sensitivity analysis with continuous outcome and binary mediator.

and the solid line represents the mediation effect under various values of ρ.
The gray region represents the 95% confidence bands. In the R̃2 plot the
average causal mediation effect is plotted against various values of R̃2

M and

R̃2
Y and is interpreted in the same way as above.

When the outcome is binary, the proportion of the total effect due to
mediation can also be calculated as a function of the sensitivity parameter ρ.
The pr.plot option in the plot command (in conjunction with the sens.par

= "rho" option) allows users to plot a summary of the sensitivity analysis
for the proportion mediated. For example, the following call would provide a
plot of this quantity:

R> plot(sens.bout, sens.par = "rho", pr.plot = TRUE)

Binary Mediator

The final form of sensitivity analysis deals with the case where the out-
come variable is continuous but the mediator is binary. For the purpose of
illustration, we simply dichotomize the job_seek variable to produce a bi-
nary measure job_dich. We fit a probit model for the mediator and linear
regression for the outcome variable.

R> model.m <- glm(job_dich ˜ treat + depress1

+ econ_hard + sex + age + occp + marital + nonwhite

+ educ + income, data = jobs,

family = binomial(link = "probit"))

R> model.y <- lm(depress2 ˜ treat + job_dich+ depress1

+ econ_hard + sex + age + occp

+ marital + nonwhite + educ + income, data = jobs)

R> med.bmed <- mediate(model.m, model.y, sims = 1000,

treat = "treat", mediator = "job_dich")
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Fig. 8.4 Sensitivity analysis with continuous outcome and binary mediator.

R> sens.bmed <- medsens(med.bmed, rho.by = 0.05,

sims = 1000)

Again we can pass the output of the medsens() function through the plot()

function:

R> plot(sens.bmed, sens.par = "rho")

producing Figure 8.4. The plot is interpreted in the same way as the above
cases. The user also has the option to plot sensitivity results in terms of the
coefficients of determination just as in the case with continuous outcome and
mediator variables.

When the mediator variable is binary, the plotted values of the mediation
effect and their confidence bands may not be perfectly smooth curves due to
simulation errors. This is especially likely when the number of simulations
(sims) is set to a small value. In such situations, the user can choose to set
the smooth.effect and smooth.ci options to TRUE in the plot() function
so that the corresponding values become smoothed out via a lowess smoother
before being plotted. Although this option often makes the produced graph
look nicer, the user should be cautious as the adjustment could affect one’s
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substantive conclusions in a significant way. A recommended alternative is to
increase the number of simulations.

8.4 Concluding Remarks

Causal mediation analysis is a key tool for social scientific research. In this
paper, we describe our easy-to-use software for causal mediation analysis,
mediation, that implements the new methods and algorithms introduced
by Imai et al. 2008 [3] and Imai et al. 2009 [2]. The software provides a
flexible, unified approach to causal mediation analysis in various situations
encountered by applied researchers. The object-oriented nature of the R pro-
gramming made it possible for us to implement these algorithms in a fairly
general way. In addition to the estimation of causal mediation effects, me-
diation implements formal sensitivity analyses so that researchers can as-
sess the robustness of their findings to the potential violations of the key
identifying assumption. This is an important contribution for at least two
reasons. First, even in experiments with randomize treatments, causal medi-
ation analysis requires an additional assumption that is not directly testable
from the observed data. Thus, researchers must evaluate the consequences of
potential violations of the assumption via sensitivity analysis. Alternatively,
researchers might use other experimental designs though this entails making
other assumptions [4]. Second, the accumulation of such sensitivity analyses
is essential for interpreting the relative degree of robustness across different
studies. Thus, the development of easy-to-use software, such as mediation,
facilitates causal mediation analysis in applied social science research in sev-
eral critical directions.

8.5 Notes and Acknowledgment

The most recent version (along with all previous versions) of the R package,
mediation, is available for download at the Comprehensive R Archive Net-
work (http://cran.r-project.org/web/packages/mediation). This arti-
cle is based on version 2.1 of mediation. Financial support from the National
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