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Identification, Inference and Sensitivity
Analysis for Causal Mediation Effects
Kosuke Imai, Luke Keele and Teppei Yamamoto

Abstract. Causal mediation analysis is routinely conducted by applied re-
searchers in a variety of disciplines. The goal of such an analysis is to inves-
tigate alternative causal mechanisms by examining the roles of intermediate
variables that lie in the causal paths between the treatment and outcome vari-
ables. In this paper we first prove that under a particular version of sequen-
tial ignorability assumption, the average causal mediation effect (ACME) is
nonparametrically identified. We compare our identification assumption with
those proposed in the literature. Some practical implications of our identifi-
cation result are also discussed. In particular, the popular estimator based on
the linear structural equation model (LSEM) can be interpreted as an ACME
estimator once additional parametric assumptions are made. We show that
these assumptions can easily be relaxed within and outside of the LSEM
framework and propose simple nonparametric estimation strategies. Second,
and perhaps most importantly, we propose a new sensitivity analysis that can
be easily implemented by applied researchers within the LSEM framework.
Like the existing identifying assumptions, the proposed sequential ignorabil-
ity assumption may be too strong in many applied settings. Thus, sensitivity
analysis is essential in order to examine the robustness of empirical findings
to the possible existence of an unmeasured confounder. Finally, we apply
the proposed methods to a randomized experiment from political psychol-
ogy. We also make easy-to-use software available to implement the proposed
methods.

Key words and phrases: Causal inference, causal mediation analysis, direct
and indirect effects, linear structural equation models, sequential ignorability,
unmeasured confounders.

1. INTRODUCTION

Causal mediation analysis is routinely conducted by
applied researchers in a variety of scientific disciplines
including epidemiology, political science, psychology
and sociology (see MacKinnon, 2008). The goal of
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such an analysis is to investigate causal mechanisms by
examining the role of intermediate variables thought to
lie in the causal path between the treatment and out-
come variables. Over fifty years ago, Cochran (1957)
pointed to both the possibility and difficulty of using
covariance analysis to explore causal mechanisms by
stating: “Sometimes these averages have no physical
or biological meaning of interest to the investigator,
and sometimes they do not have the meaning that is
ascribed to them at first glance” (page 267). Recently,
a number of statisticians have taken up Cochran’s chal-
lenge. Robins and Greenland (1992) initiated a formal
study of causal mediation analysis, and a number of ar-
ticles have appeared in more recent years (e.g., Pearl,
2001; Robins, 2003; Rubin, 2004; Petersen, Sinisi and
van der Laan, 2006; Geneletti, 2007; Joffe, Small and
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Hsu, 2007; Ten Have et al., 2007; Albert, 2008; Jo,
2008; Joffe et al., 2008; Sobel, 2008; VanderWeele,
2008, 2009; Glynn, 2010).

What do we mean by a causal mechanism? The
aforementioned paper by Cochran gives the follow-
ing example. In a randomized experiment, researchers
study the causal effects of various soil fumigants on
eelworms that attack farm crops. They observe that
these soil fumigants increase oats yields but wish to
know whether the reduction of eelworms represents
an intermediate phenomenon that mediates this effect.
In fact, many scientists across various disciplines are
not only interested in causal effects but also in causal
mechanisms because competing scientific theories of-
ten imply that different causal paths underlie the same
cause-effect relationship.

In this paper we contribute to this fast-growing lit-
erature in several ways. After briefly describing our
motivating example in the next section, we prove in
Section 3 that under a particular version of the sequen-
tial ignorability assumption, the average causal media-
tion effect (ACME) is nonparametrically identified. We
compare our identifying assumption with those pro-
posed in the literature, and discuss practical implica-
tions of our identification result. In particular, Baron
and Kenny’s (1986) popular estimator (Google Scholar
records over 17 thousand citations for this paper),
which is based on a linear structural equation model
(LSEM), can be interpreted as an ACME estimator un-
der the proposed assumption if additional parametric
assumptions are satisfied. We show that these addi-
tional assumptions can be easily relaxed within and
outside of the LSEM framework. In particular, we pro-
pose a simple nonparametric estimation strategy in
Section 4. We conduct a Monte Carlo experiment to
investigate the finite-sample performance of the pro-
posed nonparametric estimator and its asymptotic con-
fidence interval.

Like many identification assumptions, the proposed
assumption may be too strong for the typical situations
in which causal mediation analysis is employed. For
example, in experiments where the treatment is ran-
domized but the mediator is not, the ignorability of the
treatment assignment holds but the ignorability of the
mediator may not. In Section 5 we propose a new sen-
sitivity analysis that can be implemented by applied re-
searchers within the standard LSEM framework. This
method directly evaluates the robustness of empirical
findings to the possible existence of unmeasured pre-
treatment variables that confound the relationship be-
tween the mediator and the outcome. Given the fact

that the sequential ignorability assumption cannot be
directly tested even in randomized experiments, sen-
sitivity analysis must play an essential role in causal
mediation analysis. Finally, in Section 6 we apply the
proposed methods to the empirical example, to which
we now turn.

2. AN EXAMPLE FROM THE SOCIAL SCIENCES

Since the influential article by Baron and Kenny
(1986), mediation analysis has been frequently used
in the social sciences and psychology in particular.
A central goal of these disciplines is to identify causal
mechanisms underlying human behavior and opinion
formation. In a typical psychological experiment, re-
searchers randomly administer certain stimuli to sub-
jects and compare treatment group behavior or opin-
ions with those in the control group. However, to di-
rectly test psychological theories, estimating the causal
effects of the stimuli is typically not sufficient. Instead,
researchers choose to investigate psychological factors
such as cognition and emotion that mediate causal ef-
fects in order to explain why individuals respond to a
certain stimulus in a particular way. Another difficulty
faced by many researchers is their inability to directly
manipulate psychological constructs. It is in this con-
text that causal mediation analysis plays an essential
role in social science research.

In Section 6 we apply our methods to an influen-
tial randomized experiment from political psychology.
Nelson, Clawson and Oxley (1997) examine how the
framing of political issues by the news media affects
citizens’ political opinions. While the authors are not
the first to use causal mediation analysis in political
science, their study is one of the most well-known ex-
amples in political psychology and also represents a
typical application of causal mediation analyses in the
social sciences. Media framing is the process by which
news organizations define a political issue or empha-
size particular aspects of that issue. The authors hy-
pothesize that differing frames for the same news story
alter citizens’ political tolerance by affecting more gen-
eral political attitudes. They conducted a randomized
experiment to test this mediation hypothesis.

Specifically, Nelson, Clawson and Oxley (1997)
used two different local newscasts about a Ku Klux
Klan rally held in central Ohio. In the experiment,
student subjects were randomly assigned to watch the
nightly news from two different local news channels.
The two news clips were identical except for the final
story on the Klan rally. In one newscast, the Klan rally
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was presented as a free speech issue. In the second
newscast, the journalists presented the Klan rally as a
disruption of public order that threatened to turn vio-
lent. The outcome was measured using two different
scales of political tolerance. Immediately after viewing
the news broadcast, subjects were asked two seven-
point scale questions measuring their tolerance for the
Klan speeches and rallies. The hypothesis was that the
causal effects of the media frame on tolerance are me-
diated by subjects’ attitudes about the importance of
free speech and the maintenance of public order. In
other words, the media frame influences subjects’ atti-
tudes toward the Ku Klux Klan by encouraging them
to consider the Klan rally as an event relevant for the
general issue of free speech or public order. The re-
searchers used additional survey questions and a scal-
ing method to measure these hypothesized mediating
factors after the experiment was conducted.

Table 1 reports descriptive statistics for these media-
tor variables as well as the treatment and outcome vari-
ables. The sample size is 136, with 67 subjects exposed
to the free speech frame and 69 subjects assigned to
the public order frame. As is clear from the last col-
umn, the media frame treatment appears to influence
both types of response variables in the expected direc-
tions. For example, being exposed to the public order
frame as opposed to the free speech frame significantly
increased the subjects’ perceived importance of public
order, while decreasing the importance of free speech
(although the latter effect is not statistically signifi-
cant). Moreover, the public order treatment decreased
the subjects’ tolerance toward the Ku Klux Klan speech
in the news clips compared to the free speech frame.

It is important to note that the researchers in this ex-
ample are primarily interested in the causal mechanism
between media framing and political tolerance rather

than various causal effects given in the last column of
Table 1. Indeed, in many social science experiments,
researchers’ interest lies in the identification of causal
mediation effects rather than the total causal effect or
controlled direct effects (these terms are formally de-
fined in the next section). Causal mediation analysis is
particularly appealing in such situations.

One crucial limitation of this study, however, is that
like many other psychological experiments the origi-
nal researchers were only able to randomize news sto-
ries but not subjects’ attitudes. This implies that there
is likely to be unobserved covariates that confound the
relationship between the mediator and the outcome. As
we formally show in the next section, the existence of
such confounders represents a violation of a key as-
sumption for identifying the causal mechanism. For
example, it is possible that subjects’ underlying politi-
cal ideology affects both their public order attitude and
their tolerance for the Klan rally within each treatment
condition. This scenario is of particular concern since
it is well established that politically conservative citi-
zens tend to be more concerned about public order is-
sues and also, in some instances, be more sympathetic
to groups like the Klan. In Section 5 we propose a new
sensitivity analysis that partially addresses such con-
cerns.

3. IDENTIFICATION

In this section we propose a new nonparametric iden-
tification assumption for the ACME and discuss its
practical implications. We also compare the proposed
assumption with those available in the literature.

3.1 The Framework

Consider a simple random sample of size n from a
population where for each unit i we observe (Ti,Mi,

TABLE 1
Descriptive statistics and estimated average treatment effects from the media framing experiment. The middle four columns show the means

and standard deviations of the mediator and outcome variables for each treatment group. The last column reports the estimated average
causal effects of the public order frame as opposed to the free speech frame on the three response variables along with their standard errors.

The estimates suggest that the treatment affected each of these variables in the expected directions

Treatment media frames

Public order Free speech

Response variables Mean S.D. Mean S.D. ATE (s.e.)

Importance of free speech 5.25 1.43 5.49 1.35 −0.231 (0.239)
Importance of public order 5.43 1.73 4.75 1.80 0.674 (0.303)
Tolerance for the KKK 2.59 1.89 3.13 2.07 −0.540 (0.340)

Sample size 69 67
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Xi,Yi). We use Ti to denote the binary treatment vari-
able where Ti = 1 (Ti = 0) implies unit i receives (does
not receive) the treatment. The mediating variable of
interest, that is, the mediator, is represented by Mi ,
whereas Yi represents the outcome variable. Finally,
Xi denotes the vector of observed pre-treatment covari-
ates, and we use M, X and Y to denote the support of
the distributions of Mi , Xi and Yi , respectively.

What qualifies as a mediator? Since the mediator lies
in the causal path between the treatment and the out-
come, it must be a post-treatment variable that occurs
before the outcome is realized. Beyond this minimal
requirement, what constitutes a mediator is determined
solely by the scientific theory under investigation. Con-
sider the following example, which is motivated by a
referee’s comment. Suppose that the treatment is par-
ents’ decision to have their child receive the live vac-
cine for H1N1 flu virus and the outcome is whether the
child develops flu or not. For a virologist, a mediator of
interest may be the development of antibodies to H1N1
live vaccine. But, if parents sign a form acknowledging
the risks of the vaccine, can this act of form signing
also be a mediator? Indeed, social scientists (if not vi-
rologists!) may hypothesize that being informed of the
risks will make parents less likely to have their child
receive the second dose of the vaccine, thereby increas-
ing the risk of developing flu. This example highlights
the important role of scientific theories in causal medi-
ation analysis.

To define the causal mediation effects, we use the po-
tential outcomes framework. Let Mi(t) denote the po-
tential value of the mediator for unit i under the treat-
ment status Ti = t . Similarly, we use Yi(t,m) to repre-
sent the potential outcome for unit i when Ti = t and
Mi = m. Then, the observed variables can be written as
Mi = Mi(Ti) and Yi = Yi(Ti,Mi(Ti)). Similarly, if the
mediator takes J different values, there exist 2J poten-
tial values of the outcome variable, only one of which
can be observed.

Using the potential outcomes notation, we can define
the causal mediation effect for unit i under treatment
status t as (see Robins and Greenland, 1992; Pearl,
2001)

δi(t) ≡ Yi(t,Mi(1)) − Yi(t,Mi(0))(1)

for t = 0,1. Pearl (2001) called δi(t) the natural in-
direct effect, while Robins (2003) used the term the
pure indirect effect for δi(0) and the total indirect ef-
fect for δi(1). In words, δi(t) represents the difference
between the potential outcome that would result un-
der treatment status t , and the potential outcome that

would occur if the treatment status is the same and yet
the mediator takes a value that would result under the
other treatment status. Note that the former is observ-
able (if the treatment variable is actually equal to t),
whereas the latter is by definition unobservable [un-
der the treatment status t we never observe Mi(1 − t)].
Some feel uncomfortable with the idea of making in-
ferences about quantities that can never be observed
(e.g., Rubin, 2005, page 325), while others emphasize
their importance in policy making and scientific re-
search (Pearl, 2001, Section 2.4, 2010, Section 6.1.4;
Hafeman and Schwartz 2009).

Furthermore, the above notation implicitly assumes
that the potential outcome depends only on the val-
ues of the treatment and mediating variables and, in
particular, not on how they are realized. For example,
this assumption would be violated if the outcome vari-
able responded to the value of the mediator differently
depending on whether it was directly assigned or oc-
curred as a natural response to the treatment, that is, for
t = 0,1 and all m ∈ M, Yi(t,Mi(t)) = Yi(t,Mi(1 −
t)) = Yi(t,m) if Mi(1) = Mi(0) = m.

Thus, equation (1) formalizes the idea that the medi-
ation effects represent the indirect effects of the treat-
ment through the mediator. In this paper we focus on
the identification and inference of the average causal
mediation effect (ACME), which is defined as

δ̄(t) ≡ E(δi(t))
(2)

= E{Yi(t,Mi(1)) − Yi(t,Mi(0))}
for t = 0,1. In the potential outcomes framework, the
causal effect of the treatment on the outcome for unit i

is defined as τi ≡ Yi(1,Mi(1)) − Yi(0,Mi(0)), which
is typically called the total causal effect. Therefore, the
causal mediation effect and the total causal effect have
the following relationship:

τi = δi(t) + ζi(1 − t),(3)

where ζi(t) = Yi(1,Mi(t)) − Yi(0,Mi(t)) for t = 0,1.
This quantity ζi(t) is called the natural direct effect by
Pearl (2001) and the pure/total direct effect by Robins
(2003). This represents the causal effect of the treat-
ment on the outcome when the mediator is set to the po-
tential value that would occur under treatment status t .
In other words, ζi(t) is the direct effect of the treat-
ment when the mediator is held constant. Equation (3)
shows an important relationship where the total causal
effect is equal to the sum of the mediation effect un-
der one treatment condition and the natural direct effect
under the other treatment condition. Clearly, this equal-
ity also holds for the average total causal effect so that
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τ̄ ≡ E{Yi(1,Mi(1)) − Yi(0,Mi(0))} = δ̄(t) + ζ̄ (1 − t)

for t = 0,1 where ζ̄ (t) = E(ζi(t)).
The causal mediation effects and natural direct ef-

fects differ from the controlled direct effect of the me-
diator, that is, Yi(t,m) − Yi(t,m

′) for t = 0,1 and
m �= m′, and that of the treatment, that is, Yi(1,m) −
Yi(0,m) for all m ∈ M (Pearl, 2001; Robins, 2003).
Unlike the mediation effects, the controlled direct ef-
fects of the mediator are defined in terms of specific
values of the mediator, m and m′, rather than its poten-
tial values, Mi(1) and Mi(0). While causal mediation
analysis is used to identify possible causal paths from
Ti to Yi , the controlled direct effects may be of inter-
est, for example, if one wishes to understand how the
causal effect of Mi on Yi changes as a function of Ti .
In other words, the former examines whether Mi medi-
ates the causal relationship between Ti and Yi , whereas
the latter investigates whether Ti moderates the causal
effect of Mi on Yi (Baron and Kenny, 1986).

3.2 The Main Identification Result

We now present our main identification result using
the potential outcomes framework described above. We
show that under a particular version of sequential ig-
norability assumption, the ACME is nonparametrically
identified. We first define our identifying assumption:

ASSUMPTION 1 (Sequential ignorability).

{Yi(t
′,m),Mi(t)} ⊥⊥ Ti |Xi = x,(4)

Yi(t
′,m) ⊥⊥ Mi(t)|Ti = t,Xi = x(5)

for t, t ′ = 0,1, and all x ∈ X where it is also assumed
that 0 < Pr(Ti = t |Xi = x) and 0 < p(Mi(t) = m|Ti =
t,Xi = x) for t = 0,1, and all x ∈ X and m ∈ M.

Thus, the treatment is first assumed to be ignorable
given the pre-treatment covariates, and then the me-
diator variable is assumed to be ignorable given the
observed value of the treatment as well as the pre-
treatment covariates. We emphasize that, unlike the
standard sequential ignorability assumption in the lit-
erature (e.g., Robins, 1999), the conditional indepen-
dence given in equation (5) of Assumption 1 must hold
without conditioning on the observed values of post-
treatment confounders. This issue is discussed further
below.

The following theorem presents our main identifi-
cation result, showing that under this assumption the
ACME is nonparametrically identified.

THEOREM 1 (Nonparametric identification). Un-
der Assumption 1, the ACME and the average natural
direct effects are nonparametrically identified as fol-

lows for t = 0,1:

δ̄(t) =
∫ ∫

E(Yi |Mi = m,Ti = t,Xi = x)

{dFMi |Ti=1,Xi=x(m)

− dFMi |Ti=0,Xi=x(m)}dFXi
(x),

ζ̄ (t) =
∫ ∫

{E(Yi |Mi = m,Ti = 1,Xi = x)

− E(Yi |Mi = m,Ti = 0,Xi = x)}
dFMi |Ti=t,Xi=x(m)dFXi

(x),

where FZ(·) and FZ|W(·) represent the distribution
function of a random variable Z and the conditional
distribution function of Z given W .

A proof is given in Appendix A. Theorem 1 is quite
general and can be easily extended to any types of
treatment regimes, for example, a continuous treatment
variable. In fact, the proof requires no change except
letting t and t ′ take values other than 0 and 1. Assump-
tion 1 can also be somewhat relaxed by replacing equa-
tion (5) with its corresponding mean independence as-
sumption. However, as mentioned above, this identifi-
cation result does not hold under the standard sequen-
tial ignorability assumption. As shown by Avin, Sh-
pitser and Pearl (2005) and also pointed out by Robins
(2003), the nonparametric identification of natural di-
rect and indirect effects is not possible without an addi-
tional assumption if equation (5) holds only after con-
ditioning on the post-treatment confounders Zi as well
as the pre-treatment covariates Xi , that is, Yi(t

′,m) ⊥⊥
Mi(t)|Ti = t,Zi = z,Xi = x, for t, t ′ = 0,1, and all
x ∈ X and z ∈ Z where Z is the support of Zi . This
is an important limitation since assuming the absence
of post-treatment confounders may not be credible in
many applied settings. In some cases, however, it is
possible to address the main source of confounding by
conditioning on pre-treatment variables alone (see Sec-
tion 6 for an example).

3.3 Comparison with the Existing Results
in the Literature

Next, we compare Theorem 1 with the related identi-
fication results in the literature. First, Pearl (2001, The-
orem 2) makes the following set of assumptions in or-
der to identify δ̄(t∗):

p(Y (t,m)|Xi = x) and
(6)

p(Mi(t
∗)|Xi = x) are identifiable,

Yi(t,m) ⊥⊥ Mi(t
∗)|Xi = x(7)
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for all t = 0,1, m ∈ M, and x ∈ X . Under these as-
sumptions, Pearl arrives at the same expressions for the
ACME as the ones given in Theorem 1. Indeed, it can
be shown that Assumption 1 implies equations (6) and
(7). While the converse is not necessarily true, in prac-
tice, the difference is only technical (see, e.g., Robins,
2003, page 76). For example, consider a typical sit-
uation where the treatment is randomized given the
observed pre-treatment covariates Xi and researchers
are interested in identifying both δ̄(1) and δ̄(0). In this
case, it can be shown that Assumption 1 is equivalent
to Pearl’s assumptions.

Moreover, one practical advantage of equation (5) of
Assumption 1 is that it is easier to interpret than equa-
tion (7), which represents the independence between
the potential values of the outcome and the potential
values of the mediator. Pearl himself recognizes this
difficulty, and states “assumptions of counterfactual in-
dependencies can be meaningfully substantiated only
when cast in structural form” (page 416). In contrast,
equation (5) simply means that Mi is effectively ran-
domly assigned given Ti and Xi .

Second, Robins (2003) considers the identification
under what he calls a FRCISTG model, which satisfies
equation (4) as well as

Yi(t,m) ⊥⊥ Mi(t)|Ti = t,Zi = z,Xi = x(8)

for t = 0,1 where Zi is a vector of the observed values
of post-treatment variables that confound the relation-
ship between the mediator and outcome. The key dif-
ference between Assumption 1 and a FRCISTG model
is that the latter allows conditioning on Zi while the
former does not. Robins (2003) argued that this is an
important practical advantage over Pearl’s conditions,
in that it makes the ignorability of the mediator more
credible. In fact, not allowing for conditioning on ob-
served post-treatment confounders is an important lim-
itation of Assumption 1.

Under this model, Robins (2003, Theorem 2.1)
shows that the following additional assumption is suf-
ficient to identify the ACME:

Yi(1,m) − Yi(0,m) = Bi,(9)

where Bi is a random variable independent of m.
This assumption, called the no-interaction assumption,
states that the controlled direct effect of the treatment
does not depend on the value of the mediator. In prac-
tice, this assumption can be violated in many applica-
tions and has sometimes been regarded as “very restric-
tive and unrealistic” (Petersen, Sinisi and van der Laan,
2006, page 280). In contrast, Theorem 1 shows that

under the sequential ignorability assumption that does
not condition on the post-treatment covariates, the no-
interaction assumption is not required for the nonpara-
metric identification. Therefore, there exists an impor-
tant trade-off; allowing for conditioning on observed
post-treatment confounders requires an additional as-
sumption for the identification of the ACME.

Third, Petersen, Sinisi and van der Laan (2006)
present yet another set of identifying assumptions.
In particular, they maintain equation (5) but replace
equation (4) with the following slightly weaker con-
dition:

Yi(t,m) ⊥⊥ Ti |Xi = x and
(10)

Mi(t) ⊥⊥ Ti |Xi = x

for t = 0,1 and all m ∈ M. In practice, this differ-
ence is only a technical matter because, for exam-
ple, in randomized experiments where the treatment
is randomized, equations (4) and (10) are equiva-
lent. However, this slight weakening of equation (4)
comes at a cost, requiring an additional assumption
for the identification of the ACME. Specifically, Pe-
tersen, Sinisi and van der Laan (2006) assume that
the magnitude of the average direct effect does not
depend on the potential values of the mediator, that
is, E{Yi(1,m) − Yi(0,m)|Mi(t

∗) = m,Xi = x} =
E{Yi(1,m) − Yi(0,m)|Xi = x} for all m ∈ M. The-
orem 1 shows that if equation (10) is replaced with
equation (4), which is possible when the treatment is
randomized, then this additional assumption is unnec-
essary for the nonparametric identification. In addi-
tion, this additional assumption is somewhat difficult
to interpret in practice because it entails the mean in-
dependence relationship between the potential values
of the outcome and the potential values of the media-
tor.

Fourth, in the appendix of a recent paper, Hafeman
and VanderWeele (2010) show that if the mediator is
binary, the ACME can be identified with a weaker set
of assumptions than Assumption 1. However, it is un-
clear whether this result can be generalized to cases
where the mediator is nonbinary. In contrast, the identi-
fication result given in Theorem 1 holds for any type of
mediator, whether discrete or continuous. Both identi-
fication results hold for general treatment regimes, un-
like some of the previous results.

Finally, Rubin (2004) suggests an alternative ap-
proach to causal mediation analysis, which has been
adopted recently by other scholars (e.g., Egleston et
al., 2006; Gallop et al., 2009; Elliott, Raghunathan
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and Li, 2010). In this framework, the average direct
effect of the treatment is given by E(Yi(1,Mi(1)) −
Yi(0,Mi(0))|Mi(1) = Mi(0)), representing the aver-
age treatment effect among those whose mediator is
not affected by the treatment. Unlike the average di-
rect effect ζ̄ (t) introduced above, this quantity is de-
fined for a principal stratum, which is a latent subpop-
ulation. Within this framework, there exists no obvi-
ous definition for the mediation effect unless the di-
rect effect is zero (in this case, the treatment affects
the outcome only through the mediator). Although
some estimate E(Yi(1,Mi(1))−Yi(0,Mi(0))|Mi(1) �=
Mi(0)) and compare it with the above average direct
effect, as VanderWeele (2008) points out, the prob-
lem of such comparison is that two quantities are de-
fined for different subsets of the population. Another
difficulty of this approach is that when the mediator
is continuous the population proportion of those with
Mi(1) = Mi(0) can be essentially zero. This explains
why the application of this approach has been lim-
ited to the studies with a discrete (often binary) me-
diator.

3.4 Implications for Linear Structural
Equation Model

Next, we discuss the implications of Theorem 1 for
LSEM, which is a popular tool among applied re-
searchers who conduct causal mediation analysis. In
an influential article, Baron and Kenny (1986) pro-
posed a framework for mediation analysis, which has
been used by many social science methodologists; see
MacKinnon (2008) for a review and Imai, Keele and
Tingley (2009) for a critique of this literature. This
framework is based on the following system of linear
equations:

Yi = α1 + β1Ti + εi1,(11)

Mi = α2 + β2Ti + εi2,(12)

Yi = α3 + β3Ti + γMi + εi3.(13)

Although we adhere to their original model, one may
further condition on any observed pre-treatment co-
variates by including them as additional regressors in
each equation. This will change none of the results
given below so long as the model includes no post-
treatment confounders.

Under this model, Baron and Kenny (1986) sug-
gested that the existence of mediation effects can be
tested by separately fitting the three linear regressions
and testing the null hypotheses (1) β1 = 0, (2) β2 = 0,
and (3) γ = 0. If all of these null hypotheses are re-

jected, they argued, then β2γ could be interpreted as
the mediation effect. We note that equation (11) is re-
dundant given equations (12) and (13). To see this, sub-
stitute equation (12) into equation (13) to obtain

Yi = (α3 + α2γ ) + (β3 + β2γ )Ti

(14)
+ (γ εi2 + εi3).

Thus, testing β1 = 0 is unnecessary since the ACME
can be nonzero even when the average total causal ef-
fect is zero. This happens when the mediation effect
offsets the direct effect of the treatment.

The next theorem proves that within the LSEM
framework, Baron and Kenny’s interpretation is valid
if Assumption 1 holds.

THEOREM 2 (Identification under the LSEM). Con-
sider the LSEM defined in equations (11), (12) and
(13). Under Assumption 1, the ACME is identified and
given by δ̄(0) = δ̄(1) = β2γ, where the equality be-
tween δ̄(0) and δ̄(1) is also assumed.

A proof is in Appendix B. The theorem implies that
under the same set of assumptions, the average natural
direct effects are identified as ζ̄ (0) = ζ̄ (1) = β3, where
the average total causal effect is τ̄ = β3 + β2γ . Thus,
Assumption 1 enables the identification of the ACME
under the LSEM. Egleston et al. (2006) obtain a sim-
ilar result under the assumptions of Pearl (2001) and
Robins (2003), which were reviewed in Section 3.3.

It is important to note that under Assumption 1,
the standard LSEM defined in equations (12) and (13)
makes the following no-interaction assumption about
the ACME:

ASSUMPTION 2 (No-interaction between the Treat-
ment and the ACME).

δ̄(1) = δ̄(0).

This assumption is equivalent to the no-interaction
assumption for the average natural direct effects,
ζ̄ (1) = ζ̄ (0). Although Assumption 2 is related to and
implied by Robins’ no-interaction assumption given in
equation (9), the key difference is that Assumption 2
is written in terms of the ACME rather than controlled
direct effects.

As Theorem 1 suggests, Assumption 2 is not re-
quired for the identification of the ACME under the
LSEM. We extend the outcome model given in equa-
tion (13) to

Yi = α3 + β3Ti + γMi + κTiMi + εi3,(15)
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where the interaction term between the treatment and
mediating variables is added to the outcome regres-
sion while maintaining the linearity in parameters. This
formulation was first suggested by Judd and Kenny
(1981) and more recently advocated by Kraemer et al.
(2002, 2008) as an alternative to Barron and Kenny’s
approach. Under Assumption 1 and the model defined
by equations (12) and (15), we can identify the ACME
as δ̄(t) = β2(γ + tκ) for t = 0,1. The average natural
direct effects are identified as ζ̄ (t) = β3 +κ(α2 +β2t),
and the average total causal effect is equal to τ̄ =
β2γ + β3 + κ(α2 + β2). This conflicts with the pro-
posal by Kraemer et al. (2008) that the existence of
mediation effects can be established by testing either
γ = 0 or κ = 0, which is clearly neither a necessary
nor sufficient condition for δ̄(t) to be zero.

The connection between the parametric and non-
parametric identification becomes clearer when both
Ti and Mi are binary. To see this, note that δ̄(t) can
be equivalently expressed as [dropping the integration
over P(Xi) for notational simplicity]

δ̄(t) =
J−1∑
m=0

E(Yi |Mi = m,Ti = t,Xi)

· {Pr(Mi = m|Ti = 1,Xi)(16)

− Pr(Mi = m|Ti = 0,Xi)},
when Mi is discrete. Furthermore, when J = 2, this
reduces to

δ̄(t) = {Pr(Mi = 1|Ti = 1,Xi)

− Pr(Mi = 1|Ti = 0,Xi)}
(17)

· {E(Yi |Mi = 1, Ti = t,Xi)

− E(Yi |Mi = 0, Ti = t,Xi)}.
Thus, the ACME equals the product of two terms rep-
resenting the average effect of Ti on Mi and that of Mi

on Yi (holding Ti at t), respectively.
Finally, in the existing methodological literature So-

bel (2008) explores the identification problem of me-
diation effects under the framework of LSEM with-
out assuming the ignorability of the mediator (see also
Albert, 2008; Jo, 2008). However, Sobel (2008) main-
tains, among others, the assumption that the causal ef-
fect of the treatment is entirely through the mediator
and applies the instrumental variables technique of An-
grist, Imbens and Rubin (1996). That is, the natural di-
rect effect is assumed to be zero for all units a priori,
that is, ζi(t) = 0 for all t = 0,1 and i. This assump-
tion may be undesirable from the perspective of ap-
plied researchers, because the existence of the natural

direct effect itself is often of interest in causal media-
tion analysis. See Joffe et al. (2008) for an interesting
application.

4. ESTIMATION AND INFERENCE

In this section we use our nonparametric identifica-
tion result above and propose simple parametric and
nonparametric estimation strategies.

4.1 Parametric Estimation and Inference

Under the LSEM given by equations (12) and (13)
and Assumption 1, the estimation of the ACME is
straightforward since the error terms are indepen-
dent of each other. Thus, one can follow the pro-
posal of Baron and Kenny (1986) and estimate equa-
tions (12) and (13) by fitting two separate linear re-
gressions. The standard error for the estimated ACME,
that is, δ̂(t) = β̂2γ̂ , can be calculated either approx-
imately using the Delta method (Sobel, 1982), that
is, Var(δ̂(t)) ≈ β2

2 Var(γ̂ ) + γ 2 Var(β̂2), or exactly
via the variance formula of Goodman (1960), that is,
Var(δ̂(t)) = β2

2 Var(γ̂ ) + γ 2 Var(β̂2) + Var(γ̂ )Var(β̂2).
For the natural direct and total effects, standard errors
can be obtained via the regressions of Yi on Ti and Mi

[equation (13)] and Yi on Ti [equation (11)], respec-
tively.

When the model contains the interaction term as
in equation (15) (so that Assumption 2 is relaxed),
the asymptotic variance can be computed in a simi-
lar manner. For example, using the delta method, we
have Var(δ̂(t)) ≈ (γ + tκ)2 Var(β̂2) + β2

2 {Var(γ̂ ) +
t Var(κ̂) + 2t Cov(γ̂ , κ̂)} for t = 0,1. Similarly,
Var(ζ̂ (t)) ≈ Var(β̂3) + (α2 + tβ2)

2 Var(κ̂) + 2(α2 +
tβ2)Cov(β̂3, κ̂)+κ2{Var(α̂2)+ t Var(β̂2)+2t Cov(α̂2,

β̂2)}. For the average total causal effect, the variance
can be obtained from the regression of Yi on Ti .

4.2 Nonparametric Estimation and Inference

Next, we consider a simple nonparametric estimator.
Suppose that the mediator is discrete and takes J dis-
tinct values, that is, M = {0,1, . . . , J − 1}. The case
of continuous mediators is considered further below.
First, we consider the cases where we estimate the
ACME separately within each stratum defined by the
pre-treatment covariates Xi . One may then aggregate
the resulting stratum-specific estimates to obtain the
estimated ACME. In such situations, a nonparametric
estimator can be obtained by plugging in sample ana-
logues for the population quantities in the expression
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given in Theorem 1,

δ̂(t) =
J−1∑
m=0

{∑n
i=1 Yi1{Ti = t,Mi = m}∑n
i=1 1{Ti = t,Mi = m}

·
(

1

n1

n∑
i=1

1{Ti = 1,Mi = m}(18)

− 1

n0

n∑
i=1

1{Ti = 0,Mi = m}
)}

,

where nt = ∑n
i=1 1{Ti = t} and t = 0,1. By the law of

large numbers, this estimator asymptotically converges
to the true ACME under Assumption 1. The next theo-
rem derives the asymptotic variance of the nonparamet-
ric estimator defined in equation (18) given the realized
values of the treatment variable.

THEOREM 3 (Asymptotic variance of the nonpara-
metric estimator). Suppose that Assumption 1 holds.
Then, the variance of the nonparametric estimator de-
fined in equation (18) is asymptotically approximated
by

Var(δ̂(t)) ≈ 1

nt

J−1∑
m=0

ν1−t,m

{(
ν1−t,m

νtm

− 2
)

· Var(Yi |Mi = m,Ti = t)

+ nt(1 − ν1−t,m)μ2
tm

n1−t

}

− 2

n1−t

J−1∑
m′=m+1

J−2∑
m=0

ν1−t,mν1−t,m′μtmμtm′

+ 1

nt

Var(Yi |Ti = t)

for t = 0,1 where νtm ≡ Pr(Mi = m|Ti = t) and
μtm ≡ E(Yi |Mi = m,Ti = t).

A proof is based on a tedious but simple applica-
tion of the Delta method and thus is omitted. This as-
ymptotic variance can be consistently estimated by re-
placing unknown population quantities with their cor-
responding sample counterparts. The estimated overall
variance can be obtained by aggregating the estimated
within-strata variances according to the sample size in
each stratum.

The second and perhaps more general strategy is
to use nonparametric regressions to model μtm(x) ≡
E(Yi |Ti = t,Mi = m,Xi = x) and νtm(x) ≡ Pr(Mi =

m|Ti = t,Xi = x), and then employ the following esti-
mator:

δ̂(t) = 1

n

{
n∑

i=1

J−1∑
m=0

μ̂tm(Xi)

(19)

· (
ν̂1m(Xi) − ν̂0m(Xi)

)}
for t = 0,1. This estimator is also asymptotically con-
sistent for the ACME under Assumption 1 if μ̂tm(x)

and ν̂tm(x) are consistent for μtm(x) and νtm(x), re-
spectively. Unfortunately, in general, there is no simple
expression for the asymptotic variance of this estima-
tor. Thus, one may use a nonparametric bootstrap [or
a parametric bootstrap based on the asymptotic distri-
bution of μ̂tm(x) and ν̂tm(x)] to compute uncertainty
estimates.

Finally, when the mediator is not discrete, we may
nonparametrically model μtm(x) ≡ E(Yi |Ti = t,Mi =
m,Xi = x) and ψt(x) = p(Mi |Ti = t,Xi = x). Then,
one can use the following estimator:

δ̂(t) = 1

nK

n∑
i=1

K∑
k=1

{
μ̂

tm̃
(k)
1i

(Xi) − μ̂
tm̃

(k)
0i

(Xi)
}
,(20)

where m̃
(k)
ti is the kth Monte Carlo draw of the me-

diator Mi from its predicted distribution based on the
fitted model ψ̂t (Xi).

These estimation strategies are quite general in that
they can be applied to a wide range of statistical mod-
els. Imai, Keele and Tingley (2009) demonstrate the
generality of these strategies by applying them to com-
mon parametric and nonparametric regression tech-
niques often used by applied researchers. By doing so,
they resolve some confusions held by social science
methodologists, for example, how to estimate media-
tion effects when the outcome and/or the mediator is
binary. Furthermore, the proposed general estimation
strategies enable Imai et al. (2010) to develop an easy-
to-use R package, mediation, that implements these
methods and demonstrate its use with an empirical ex-
ample.

4.3 A Simulation Study

Next, we conduct a small-scale Monte Carlo ex-
periment in order to investigate the finite-sample per-
formance of the estimators defined in equations (18)
and (19) as well as the proposed variance estima-
tor given in Theorem 3. We use a population model
where the potential outcomes and mediators are given
by Yi(t,m) = exp(Y ∗

i (t,m)), Mi(t) = 1{M∗
i (t) ≥ 0.5}
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and Y ∗
i (t,m), M∗

i (t) are jointly normally distributed.
The population parameters are set to the following val-
ues: E(Y ∗

i (1,1)) = 2; E(Y ∗
i (1,0)) = 0; E(Y ∗

i (0,1)) =
1; E(Y ∗

i (0,0)) = 0.5; E(M∗
i (1)) = 1; E(M∗

i (0)) = 0;
Var(Y ∗

i (t,m)) = Var(M∗
i (t)) = 1 for t ∈ {0,1} and

m ∈ {0,1}; Corr(Y ∗
i (t,m),Y ∗

i (t ′,m′)) = 0.5 for t, t ′ ∈
{0,1} and m,m′ ∈ {0,1}; Corr(Y ∗

i (t,m),M∗
i (t ′)) =

0 for t ∈ {0,1} and m ∈ {0,1}; and Corr(M∗
i (1),

M∗
i (0)) = 0.3.
Under this setup, Assumption 1 is satisfied. Thus, we

can consistently estimate the ACME by applying the
nonparametric estimator given in equation (18). Also,
note that this data generating process implies the fol-
lowing parametric regression models for the observed
data:

Pr(Mi = 1|Ti) = �(α2 + β2Ti),(21)

Yi |Ti,Mi ∼ lognormal(α3 + β3Ti + γMi

(22)
+ κTiMi, σ

2
3 ),

where (α2, β2, α3, β3, γ, κ, σ 2
3 ) = (−0.5,1,0.5,−0.5,

0.5,1.5,1) and �(·) is the standard normal distribu-
tion function. We can then obtain the parametric maxi-
mum likelihood estimate of the ACME by fitting these
two models via standard procedures and estimating the
following expression based on Theorem 1 [see equa-
tion (17)]:

δ̄(t) = {exp(α3 + β3t + γ + κt + σ 2
3 /2)

− exp(α3 + β3t + σ 2
3 /2)}(23)

· {�(α2 + β2) − �(α2)}

for t = 0,1.
We compare the performances of these two estima-

tors via Monte Carlo simulations. Specifically, we set
the sample size n to 50, 100 and 500 where half of
the sample receives the treatment and the other half is
assigned to the control group, that is, n1 = n0 = n/2.
Using equation (23), the true values of the ACME are
given by δ̄(0) = 0.675 and δ̄(1) = 4.03.

Table 2 reports the results of the experiments based
on fifty thousand iterations. The performance of the es-
timators turns out to be quite good in this particular set-
ting. Even with sample size as small as 50, estimated
biases are essentially zero for the nonparametric esti-
mates. The parametric estimators are slightly more bi-
ased for the small sample sizes, but they converge to
the true values by the time the sample size reaches 500.
As expected, the variance is larger for the nonparamet-
ric estimator than the parametric estimator. The 95%
confidence intervals converge to the nominal coverage
as the sample size increases. The convergence occurs
much more quickly for the parametric estimator. (Al-
though not reported in the table, we confirmed that for
both estimators the coverage probabilities fully con-
verged to their nominal values by the time the sample
size reached 5000.)

5. SENSITIVITY ANALYSIS

Although the ACME is nonparametrically identified
under Assumption 1, this assumption, like other ex-
isting identifying assumptions, may be too strong in
many applied settings. Consider randomized experi-
ments where the treatment is randomized but the me-

TABLE 2
Finite-sample performance of the proposed estimators and their variance estimators. The table presents the results of a Monte Carlo

experiment with varying sample sizes and fifty thousand iterations. The upper half of the table represents the results for δ̂(0) and the bottom
half δ̂(1). The columns represent (from left to right) the following: sample sizes, estimated biases, root mean squared errors (RMSE) and the

coverage probabilities of the 95% confidence intervals of the nonparametric estimators, and the same set of quantities for the parametric
estimators. The true values of δ̄(0) and δ̄(1) are 0.675 and 4.03, respectively. The results indicate that nonparametric estimators have

smaller bias than the parametric estimator though its variance is much larger. The confidence intervals converge to the nominal coverage as
the sample size increases. The convergence occurs much more quickly for the parametric estimator

Nonparametric estimator Parametric estimator

Sample size Bias RMSE 95% CI coverage Bias RMSE 95% CI coverage

δ̂(0) 50 0.002 1.034 0.824 0.096 0.965 0.919
100 0.006 0.683 0.871 0.044 0.566 0.933
500 −0.002 0.292 0.922 0.006 0.229 0.947

δ̂(1) 50 0.010 2.082 0.886 −0.010 1.840 0.934
100 0.005 1.462 0.912 0.003 1.290 0.944
500 0.001 0.643 0.939 0.001 0.570 0.955
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diator is not. Causal mediation analysis is most fre-
quently applied to such experiments. In this case, equa-
tion (4) of Assumption 1 is satisfied but equation (5)
may not hold for two reasons. First, there may exist
unmeasured pre-treatment covariates that confound the
relationship between the mediator and the outcome.
Second, there may exist observed or unobserved post-
treatment confounders. These possibilities, along with
other obstacles encountered in applied research, have
led some scholars to warn against the abuse of media-
tion analyses (e.g., Green, Ha and Bullock, 2010). In-
deed, as we formally show below, the data generating
process contains no information about the credibility
of the sequential ignorability assumption.

To address this problem, we develop a method to as-
sess the sensitivity of an estimated ACME to unmea-
sured pre-treatment confounding (The proposed sensi-
tivity analysis, however, does not address the possible
existence of post-treatment confounders). The method
is based on the standard LSEM framework described
in Section 3.4 and can be easily used by applied re-
searchers to examine the robustness of their empirical
findings. We derive the maximum departure from equa-
tion (5) that is allowed while maintaining their original
conclusion about the direction of the ACME (see Imai
and Yamamoto, 2010). For notational simplicity, we do
not explicitly condition on the pre-treatment covariates
Xi . However, the same analysis can be conducted by
including them as additional covariates in each regres-
sion.

5.1 Parametric Sensitivity Analysis Based on the
Residual Correlation

The proof of Theorem 2 implies that if equation (4)
holds, εi2 ⊥⊥ Ti and εi3 ⊥⊥ Ti hold but εi2 ⊥⊥ εi3 does
not unless equation (5) also holds. Thus, one way to
assess the sensitivity of one’s conclusions to the viola-
tion of equation (5) is to use the following sensitivity
parameter:

ρ ≡ Corr(εi2, εi3),(24)

where −1 < ρ < 1. In Appendix C we show that As-
sumption 1 implies ρ = 0. (Of course, the contrapos-
itive of this statement is also true; ρ �= 0 implies the
violation of Assumption 1). A nonzero correlation pa-
rameter can be interpreted as the existence of omitted
variables that are related to both the observed value of
the mediator Mi and the potential outcomes Yi even
after conditioning on the treatment variable Ti (and the
observed covariates Xi). Note that these omitted vari-
ables must causally precede Ti . Then, we vary the value

of ρ and compute the corresponding estimate of the
ACME. In a quite different context, Roy, Hogan and
Marcus (2008) take this general strategy of computing
a quantity of interest at various values of an unidentifi-
able sensitivity parameter.

The next theorem shows that if the treatment is ran-
domized, the ACME is identified given a particular
value of ρ.

THEOREM 4 (Identification with a given error corre-
lation). Consider the LSEM defined in equations (11),
(12) and (13). Suppose that equation (4) holds and the
correlation between εi2 and εi3, that is, ρ, is given.
If we further assume −1 < ρ < 1, then the ACME is
identified and given by

δ̄(0) = δ̄(1) = β2σ1

σ2

{
ρ̃ − ρ

√
(1 − ρ̃2)/(1 − ρ2)

}
,

where σ 2
j ≡ Var(εij ) for j = 1,2 and ρ̃ ≡ Corr(εi1,

εi2).

A proof is in Appendix D. We offer several re-
marks about Theorem 4. First, the unbiased esti-
mates of (α1, α2, β1, β2) can be obtained by fitting the
equation-by-equation least squares of equations (11)
and (12). Given these estimates, the covariance ma-
trix of (εi1, εi2), whose elements are (σ 2

1 , σ 2
2 , ρ̃σ1σ2),

can be consistently estimated by computing the sam-
ple covariance matrix of the residuals, that is, ε̂i1 =
Yi − α̂1 − β̂1Ti and ε̂i2 = Mi − α̂2 − β̂2Ti .

Second, the partial derivative of the ACME with re-
spect to ρ implies that the ACME is either monoton-
ically increasing or decreasing in ρ, depending on
the sign of β2. The ACME is also symmetric about
(ρ, δ̄(t)) = (0, β2ρ̃σ1/σ2).

Third, the ACME is zero if and only if ρ equals ρ̃.
This implies that researchers can easily check the ro-
bustness of their conclusion obtained under the sequen-
tial ignorability assumption via correlation between εi1
and εi2. For example, if δ̂(t) = β̂2γ̂ is negative, the true
ACME is also guaranteed to be negative if ρ < ρ̃ holds.

Fourth, the expression of the ACME given in The-
orem 4 is cumbersome to use when computing the
standard errors. A more straightforward and general
approach is to apply the iterative feasible generalized
least square algorithm of the seemingly unrelated re-
gression (Zellner, 1962), and use the associated asymp-
totic variance formula. This strategy will also work
when there is an interaction term between the treatment
and mediating variables as in equation (15) and/or
when there are observed pre-treatment covariates Xi .
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Finally, Theorem 4 implies the following corollary,
which shows that under the LSEM the data generating
process is not informative at all about either the sensi-
tivity parameter ρ or the ACME without equation (5).
This result highlights the difficulty of causal mediation
analysis and the importance of sensitivity analysis even
in the parametric modeling setting.

COROLLARY 1 (Bounds on the sensitivity parame-
ter). Consider the LSEM defined in equations (11),
(12) and (13). Suppose that equation (4) holds but
equation (5) may not. Then, the sharp, that is, best pos-
sible, bounds on the sensitivity parameter ρ and ACME
are given by (−1,1) and (−∞,∞), respectively.

The first statement of the corollary follows directly
from the proof of Theorem 4, while the second state-
ment can be proved by taking a limit of δ(t) as ρ tends
to −1 or 1.

5.2 Parametric Sensitivity Analysis Based on the
Coefficients of Determination

The sensitivity parameter ρ can be given an alterna-
tive definition which allows it to be interpreted as the
magnitude of an unobserved confounder. This alterna-
tive version of ρ is based on the following decomposi-
tion of the error terms in equations (12) and (13):

εij = λjUi + ε′
ij

for j = 2,3, where Ui is an unobserved confounder
and the sequential ignorability is assumed given Ui

and Ti . Again, note that Ui has to be a pre-treatment
variable so that the resulting estimates can be given
a causal interpretation. In addition, we assume that
ε′
ij ⊥⊥ Ui for j = 2,3. We can then express the influ-

ence of the unobserved pre-treatment confounder using
the following coefficients of determination:

R2∗
M ≡ 1 − Var(ε′

i2)

Var(εi2)

and

R2∗
Y ≡ 1 − Var(ε′

i3)

Var(εi3)
,

which represent the proportion of previously unex-
plained variance (either in the mediator or in the out-
come) that is explained by the unobserved confounder
(see Imbens, 2003).

Another interpretation is based on the proportion of
original variance that is explained by the unobserved

confounder. In this case, we use the following sensitiv-
ity parameters:

R̃2
M ≡ Var(εi2) − Var(ε′

i2)

Var(Mi)
= (1 − R2

M)R2∗
M

and

R̃2
Y ≡ Var(εi3) − Var(ε′

i3)

Var(Yi)
= (1 − R2

Y )R2∗
Y ,

where R2
M and R2

Y represent the coefficients of de-
termination from the two regressions given in equa-
tions (12) and (13). Note that unlike R2∗

M and R2∗
Y

(as well as ρ given in Corollary 1), R̃2
M and R̃2

Y

are bounded from above by Var(εi2)/Var(Mi) and
Var(εi3)/Var(Yi), respectively.

In either case, it is straightforward to show that the
following relationship between ρ and these parameters
holds, that is, ρ2 = R2∗

M R2∗
Y = R̃2

MR̃2
Y /{(1 − R2

M)(1 −
R2

Y )} or, equivalently,

ρ = sgn(λ2λ3)R
∗
MR∗

Y = sgn(λ2λ3)R̃MR̃Y√
(1 − R2

M)(1 − R2
Y )

,

where R∗
M,R∗

Y , R̃M and R̃Y are in [0,1]. Thus, in
this framework, researchers can specify the values of
(R2∗

M ,R2∗
Y ) or (R̃2

M, R̃2
Y ) as well as the sign of λ2λ3 in

order to determine values of ρ and estimate the ACME
based on these values of ρ. Then, the analyst can ex-
amine variation in the estimated ACME with respect to
change in these parameters.

5.3 Extensions to Nonlinear and
Nonparametric Models

The proposed sensitivity analysis above is developed
within the framework of the LSEM, but some exten-
sions are possible. For example, Imai, Keele and Tin-
gley (2009) show how to conduct sensitivity analysis
with probit models when the mediator and/or the out-
come are discrete. In Appendix E, while it is substan-
tially more difficult to conduct such an analysis in the
nonparametric setting, we consider sensitivity analysis
for the nonparametric plug-in estimator introduced in
Section 4.2 (see also VanderWeele, 2010 for an alter-
native approach).

6. EMPIRICAL APPLICATION

In this section we apply our proposed methods to the
influential randomized experiment from political psy-
chology we described in Section 2.
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6.1 Analysis under Sequential Ignorability

In the original analysis, Nelson, Clawson and Ox-
ley (1997) used a LSEM similar to the one discussed
in Section 3.4 and found that subjects who viewed the
Klan story with the free speech frame were signifi-
cantly more tolerant of the Klan than those who saw
the story with the public order frame. The researchers
also found evidence supporting their main hypothesis
that subjects’ general attitudes mediated the causal ef-
fect of the news story frame on tolerance for the Klan.
In the analysis that follows, we only analyze the pub-
lic order mediator, for which the researchers found a
significant mediation effect.

As we showed in Section 3.4, the original results can
be given a causal interpretation under sequential ig-
norability, that is, Assumption 1. Here, we first make
this assumption and estimate causal effects based on
our theoretical results. Table 3 presents the findings.
The second and third columns of the table show the
estimated ACME and average total effect based on
the LSEM and the nonparametric estimator, respec-
tively. The 95% asymptotic confidence intervals are
constructed using the Delta method. For most of the
estimates, the 95% confidence intervals do not contain
zero, mirroring the finding from the original study that
general attitudes about public order mediated the effect
of the media frame.

As shown in Section 3.4, we can relax the no-
interaction assumption (Assumption 2) that is implicit
in the LSEM of Baron and Kenny (1986). The first and
second rows of the table present estimates from the
parametric and nonparametric analysis without this as-
sumption. These results show that the estimated ACME
under the free speech condition [δ̂(0)] is larger than the
effect under the public order condition [δ̂(1)] for both
the parametric and nonparametric estimators. In fact,
the 95% confidence interval for the nonparametric es-
timate of δ̄(1) includes zero. However, we fail to reject
the null hypothesis of δ̄(0) = δ̄(1) under the parametric
analysis, with a p-value of 0.238.

Based on this finding, the no-interaction assumption
could be regarded as appropriate. The last two rows in
Table 3 contain the analysis based on the parametric
estimator under this assumption. As expected, the es-
timated ACME is between the previous two estimates,
and the 95% confidence interval does not contain zero.
Finally, the estimated average total effect is identical
to that without Assumption 2. This makes sense since
the no-interaction assumption only restricts the way the
treatment effect is transmitted to the outcome and thus
does not affect the estimate of the overall treatment ef-
fect.

TABLE 3
Parametric and nonparametric estimates of the ACME under sequential ignorability in the media framing

experiment. Each cell of the table represents an estimated average causal effect and its 95% confidence interval.
The outcome is the subjects’ tolerance level for the free speech rights of the Ku Klux Klan, and the treatments are

the public order frame (Ti = 1) and the free speech frame (Ti = 0). The second column of the table shows the
results of the parametric LSEM approach, while the third column of the table presents those of the nonparametric
estimator. The lower part of the table shows the results of parametric mediation analysis under the no-interaction

assumption [δ̂(1) = δ̂(0)], while the upper part presents the findings without this assumption, thereby showing
the estimated average mediation effects under the treatment and the control, that is, δ̂(1) and δ̂(0)

Parametric Nonparametric

Average mediation effects
Free speech frame δ̂(0) −0.566 −0.596

[−1.081, −0.050] [−1.168, −0.024]
Public order frame δ̂(1) −0.451 −0.374

[−0.871, −0.031] [−0.823, 0.074]
Average total effect τ̂ −0.540 −0.540

[−1.207, 0.127] [−1.206, 0.126]
With the no-interaction assumption

Average mediation effect −0.510
δ̂(0) = δ̂(1) [−0.969, −0.051]

Average total effect τ̂ −0.540
[−1.206, 0.126]
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6.2 Sensitivity Analysis

The estimates in Section 6.1 are identified if the se-
quential ignorability assumption holds. However, since
the original researchers randomized news stories but
subjects’ attitudes were merely observed, it is unlikely
this assumption holds. As we discussed in Section 2,
one particular concern is that subjects’ pre-existing ide-
ology affects both their attitudes toward public order is-
sues and their tolerance for the Klan within each treat-
ment condition. Thus, we next ask how sensitive these
estimates are to violations of this assumption using the
methods proposed in Section 5. We consider politi-
cal ideology to be a possible unobserved pre-treatment
confounder. We also maintain Assumption 2.

Figure 1 presents the results for the sensitivity analy-
sis based on the residual correlation. We plot the es-
timated ACME of the attitude mediator against dif-
fering values of the sensitivity parameter ρ, which is
equal to the correlation between the two error terms
of equations (27) and (28) for each. The analysis in-
dicates that the original conclusion about the direction
of the ACME under Assumption 1 (represented by the
dashed horizontal line) would be maintained unless ρ

is less than −0.68. This implies that the conclusion is
plausible given even fairly large departures from the
ignorability of the mediator. This result holds even af-
ter we take into account the sampling variability, as the
confidence interval covers the value of zero only when
−0.79 < ρ < −0.49. Thus, the original finding about
the negative ACME is relatively robust to the violation
of equation (5) of Assumption 1 under the LSEM.

FIG. 1. Sensitivity analysis for the media framing experiment.
The figure presents the results of the sensitivity analysis described
in Section 5. The solid line represents the estimated ACME for the
attitude mediator for differing values of the sensitivity parameter
ρ, which is defined in equation (24). The gray region represents the
95% confidence interval based on the Delta method. The horizontal
dashed line is drawn at the point estimate of δ̄ under Assumption 1.

Next, we present the same sensitivity analysis us-
ing the alternative interpretation of ρ which is based
on two coefficients of determination as defined in
Section 5; (1) the proportion of unexplained variance
that is explained by an unobserved pre-treatment con-
founder (R2∗

M and R2∗
Y ) and (2) the proportion of the

original variance explained by the same unobserved
confounder (R̃2

M and R̃2
Y ). Figure 2 shows two plots

based on the types of coefficients of determination. The
lower left quadrant of each plot in the figure repre-
sents the case where the product of the coefficients for
the unobserved confounder is negative, while the upper
right quadrant represents the case where the product is
positive.

For example, this product will be positive if the
unobserved pre-treatment confounder represents sub-
jects’ political ideology, since conservatism is likely
to be positively correlated with both public order im-
portance and tolerance for the Klan. Under this sce-
nario, the original conclusion about the direction of the
ACME is perfectly robust to the violation of sequential
ignorability, because the estimated ACME is always
negative in the upper right quadrant of each plot. On
the other hand, the result is less robust to the existence
of an unobserved confounder that has opposite effects
on the mediator and outcome. However, even for this
alternative situation, the ACME is still guaranteed to
be negative as long as the unobserved confounder ex-
plains less than 27.7% of the variance in the mediator
or outcome that is left unexplained by the treatment
alone, no matter how large the corresponding portion
of the variance in the other variable may be. Similarly,
the direction of the original estimate is maintained if
the unobserved confounder explains less than 26.7%
(14.7%) of the original variance in the mediator (out-
come), regardless of the degree of confounding for the
outcome (mediator).

7. CONCLUDING REMARKS

In this paper we study identification, inference and
sensitivity analysis for causal mediation effects. Causal
mediation analysis is routinely conducted in various
disciplines, and our paper contributes to this fast-
growing methodological literature in several ways.
First, we provide a new identification condition for the
ACME, which is relatively easy to interpret in substan-
tive terms and also weaker than existing results in some
situations. Second, we prove that the estimates based
on the standard LSEM can be given valid causal inter-
pretations under our proposed framework. This pro-
vides a basis for formally analyzing the validity of
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FIG. 2. An alternative interpretation of the sensitivity analysis. The plot presents the results of the sensitivity analysis described in Section 5. Each plot contains various mediation
effects under an unobserved pre-treatment confounder of various magnitudes. The left plot contains the contours for R2∗

M and R2∗
Y which represent the proportion of unexplained variance

that is explained by the unobserved confounder for the mediator and outcome, respectively. The right plot contains the contours for R̃2
M and R̃2

Y which represent the proportion of

the variance explained by the unobserved pre-treatment confounder. Each line represents the estimated ACME under proposed values of either (R∗2
M ,R2∗

Y ) or (R̃2
M, R̃2

Y ). The term
sgn(λ2λ3) represents the sign on the product of the coefficients of the unobserved confounder.
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empirical studies using the LSEM framework. Third,
we propose simple nonparametric estimation strategies
for the ACME. This allows researchers to avoid the
stronger functional form assumptions required in the
standard LSEM. Finally, we offer a parametric sensi-
tivity analysis that can be easily used by applied re-
searchers in order to assess the sensitivity of estimates
to the violation of this assumption. We view sensitivity
analysis as an essential part of causal mediation analy-
sis because the assumptions required for identifying
causal mediation effects are unverifiable and often are
not justified in applied settings.

At this point, it is worth briefly considering the pro-
gression of mediation research from its roots in the
empirical psychology literature to the present. In their
seminal paper, Baron and Kenny (1986) supplied ap-
plied researchers with a simple method for mediation
analysis. This method has quickly gained widespread
acceptance in a number of applied fields. While psy-
chologists extended this LSEM framework in a number
of ways, little attention was paid to the conditions un-
der which their popular estimator can be given a causal
interpretation. Indeed, the formal definition of the con-
cept of causal mediation had to await the later works by
epidemiologists and statisticians (Robins and Green-
land, 1992; Pearl, 2001; Robins, 2003). The progress
made on the identification of causal mediation effects
by these authors has led to the recent development of
alternative and more general estimation strategies (e.g.,
Imai, Keele and Tingley, 2009; VanderWeele, 2009).
In this paper we show that under a set of assumptions
this popular product of coefficients estimator can be
given a causal interpretation. Thus, over twenty years
later, the work of Baron and Kenny has come full cir-
cle.

Despite its natural appeal to applied scientists, sta-
tisticians often find the concept of causal mediation
mysterious (e.g., Rubin, 2004). Part of this skepticism
seems to stem from the concept’s inherent dependence
on background scientific theory; whether a variable
qualifies as a mediator in a given empirical study relies
crucially on the investigator’s belief in the theory be-
ing considered. For example, in the social science ap-
plication introduced in Section 2, the original authors
test whether the effect of a media framing on citizens’
opinion about the Klan rally is mediated by a change in
attitudes about general issues. Such a setup might make
no sense to another political psychologist who hypoth-
esizes that the change in citizens’ opinion about the
Klan rally prompts shifts in their attitudes about more

general underlying issues. The H1N1 flu virus exam-
ple mentioned in Section 3.1 also highlights the same
fundamental point. Thus, causal mediation analysis can
be uncomfortably far from a completely data-oriented
approach to scientific investigations. It is, however,
precisely this aspect of causal mediation analysis that
makes it appealing to those who resist standard statisti-
cal analyses that focus on estimating treatment effects,
an approach which has been somewhat pejoratively la-
beled as a “black-box” view of causality (e.g., Skra-
banek, 1994; Deaton, 2009). It may be the case that
causal mediation analysis has the potential to signifi-
cantly broaden the scope of statistical analysis of cau-
sation and build a bridge between scientists and statis-
ticians.

There are a number of possible future generaliza-
tions of the proposed methods. First, the sensitivity
analysis can potentially be extended to various nonlin-
ear regression models. Some of this has been done by
Imai, Keele and Tingley (2009). Second, an important
generalization would be to allow multiple mediators
in the identification analysis. This will be particularly
valuable since in many applications researchers aim
to test competing hypotheses about alternative causal
mechanisms via mediation analysis. For example, the
media framing study we analyzed in this paper in-
cluded another measurement (on a separate group ran-
domly split from the study sample) which was pur-
ported to test an alternative causal pathway. The formal
treatment of this issue will be a major topic of future re-
search. Third, implications of measurement error in the
mediator variable have yet to be analyzed. This repre-
sents another important research topic, as mismeasured
mediators are quite common, particularly in psycho-
logical studies. Fourth, an important limitation of our
framework is that it does not allow the presence of a
post-treatment variable that confounds the relationship
between mediator and outcome. As discussed in Sec-
tion 3.3, some of the previous results avoid this prob-
lem by making additional identification assumptions
(e.g., Robins, 2003). The exploration of alternative so-
lutions is also left for future research. Finally, it is im-
portant to develop new experimental designs that help
identify causal mediation effects with weaker assump-
tions. Imai, Tingley and Yamamoto (2009) present
some new ideas on the experimental identification of
causal mechanisms.

APPENDIX A: PROOF OF THEOREM 1

First, note that equation (4) in Assumption 1 implies

Yi(t
′,m) ⊥⊥ Ti |Mi(t) = m′, Xi = x.(25)
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Now, for any t, t ′, we have

E(Yi(t,Mi(t
′))|Xi = x)

=
∫

E
(
Yi(t,m)|Mi(t

′) = m,Xi = x
)

dFMi(t
′)|Xi=x(m)

=
∫

E
(
Yi(t,m)|Mi(t

′) = m,Ti = t ′,Xi = x
)

dFMi(t
′)|Xi=x(m)

=
∫

E(Yi(t,m)|Ti = t ′,Xi = x)

dFMi(t
′)|Xi=x(m)

=
∫

E(Yi(t,m)|Ti = t,Xi = x)

dFMi(t
′)|Ti=t ′,Xi=x(m)

=
∫

E
(
Yi(t,m)|Mi(t) = m,Ti = t,Xi = x

)
dFMi(t

′)|Ti=t ′,Xi=x(m)

=
∫

E(Yi |Mi = m,Ti = t,Xi = x)

dFMi(t
′)|Ti=t ′,Xi=x(m)

=
∫

E(Yi |Mi = m,Ti = t,Xi = x)(26)

dFMi |Ti=t ′,Xi=x(m),

where the second equality follows from equation (25),
equation (5) is used to establish the third and fifth
equalities, equation (4) is used to establish the fourth
and last equalities, and the sixth equality follows from
the fact that Mi = Mi(Ti) and Yi = Yi(Ti,Mi(Ti)). Fi-
nally, equation (26) implies

E(Yi(t,Mi(t
′)))

=
∫ ∫

E(Yi |Mi = m,Ti = t,Xi = x)

dFMi |Ti=t ′,Xi=x(m)dFXi
(x).

Substituting this expression into the definition of δ̄(t)

given by equations (1) and (2) yields the desired ex-
pression for the ACME. In addition, since τ̄ = ζ̄ (t) +
δ̄(t ′) for any t, t ′ = 0,1 and t �= t ′ under Assumption 1,
the result for the average natural direct effects is also
immediate.

APPENDIX B: PROOF OF THEOREM 2

We first show that under Assumption 1 the model
parameters in the LSEM are identified. Rewrite equa-

tions (12) and (13) using the potential outcome nota-
tion as follows:

Mi(Ti) = α2 + β2Ti + εi2(Ti),(27)

Yi(Ti,Mi(Ti)) = α3 + β3Ti + γMi(Ti)
(28)

+ εi3(Ti,Mi(Ti)),

where the following normalization is used: E(εi2(t)) =
E(εi3(t,m)) = 0 for t = 0,1 and m ∈ M. Then, equa-
tion (4) of Assumption 1 implies εi2(t) ⊥⊥ Ti , yield-
ing E(εi2(Ti)|Ti = t) = E(εi2(t)) = 0 for any t = 0,1.
Similarly, equation (5) implies εi3(t,m) ⊥⊥ Mi |Ti =
t for all t and m, yielding E(εi3(Ti,Mi(Ti))|Ti =
t,Mi = m) = E(εi3(t,m)|Ti = t) = E(εi3(t,m)) =
0 for any t and m where the second equality fol-
lows from equation (4). Thus, the parameters in equa-
tions (12) and (13) are identified under Assumption 1.
Finally, under Assumption 1 and the LSEM, we can
write E(Mi |Ti) = α2 + β2Ti , and E(Yi |Mi,Ti) = α3 +
β3Ti + γMi . Using these expressions and Theorem 1,
the ACME can be shown to equal β2γ .

APPENDIX C: PROOF THAT ρ = 0 UNDER
ASSUMPTION 1

First, as shown in Appendix B, Assumption 1 im-
plies E(εi2(Ti)|Ti) = 0 and E(εi3(Ti,Mi(Ti))|Ti,

Mi) = 0 where the (potential) error terms are defined
in equations (27) and (28). These mean independence
relationships (together with the law of iterated expec-
tations) imply

0 = E(εi3(Ti,Mi(Ti))Mi)

= E
{
εi3(Ti,Mi(Ti))

(
α2 + β2Ti + εi2(Ti)

)}
= E{εi3(Ti,Mi(Ti))εi2(Ti))}.

Thus, under Assumption 1, we have ρ = 0 ⇐⇒
E{εi2(Ti)εi3(Ti,Mi(Ti))} = 0.

APPENDIX D: PROOF OF THEOREM 4

First, we write the LSEM in terms of equations (12)
and (14). We omit possible pre-treatment confounders
Xi from the model for notational simplicity, although
the result below remains true even if such confounders
are included. Since equation (4) implies E(εji |Ti) = 0
for j = 2,3, we can consistently estimate (α1, α2, β1,

β2), where α1 = α3 + α2γ and β1 = β3 + β2γ , as
well as (σ 2

1 , σ 2
2 , ρ̃). Thus, given a particular value of

ρ, we have ρ̃σ1σ2 = γ σ 2
2 + ρσ2σ3 and σ 2

1 = γ 2σ 2
2 +

σ 2
3 + 2γρσ2σ3. If ρ = 0, then γ = ρ̃σ1/σ2 provided
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that σ 2
3 = σ 2

1 (1 − ρ̃2) ≥ 0. Now, assume ρ �= 0. Then,
substituting σ3 = (ρ̃σ1 − γ σ2)/ρ into the above ex-
pression of σ 2

1 yields the following quadratic equa-
tion: γ 2 − 2γ ρ̃σ1/σ2 + σ 2

1 (ρ̃2 − ρ2)/{σ 2
2 (1 − ρ2)} =

0. Solving this equation and using σ3 ≥ 0, we ob-
tain the following desired expression: γ = σ1

σ2
{ρ̃ −

ρ

√
(1 − ρ̃2)/(1 − ρ2)}. Thus, given a particular value

of ρ, δ̄(t) is identified.

APPENDIX E: NONPARAMETRIC
SENSITIVITY ANALYSIS

We consider a sensitivity analysis for the simple
plug-in nonparametric estimator introduced in Sec-
tion 4.2. Unfortunately, sensitivity analysis is not as
straightforward as the parametric settings. Here, we ex-
amine the special case of binary mediator and outcome
where some progress can be made and leave the devel-
opment of sensitivity analysis in a more general non-
parametric case for future research.

We begin by the nonparametric bounds on the
ACME without assuming equation (5) of the sequential
ignorability assumption. In the case of binary media-
tor and outcome, we can derive the following sharp
bounds using the result of (2009):

max

⎧⎨⎩
−P001 − P011
−P000 − P001 − P100
−P011 − P010 − P110

⎫⎬⎭
(29)

≤ δ̄(1) ≤ min

⎧⎨⎩
P101 + P111
P000 + P100 + P101
P010 + P110 + P111

⎫⎬⎭ ,

max

⎧⎨⎩
−P100 − P110
−P001 − P100 − P101
−P110 − P011 − P111

⎫⎬⎭
(30)

≤ δ̄(0) ≤ min

⎧⎨⎩
P000 + P010
P010 + P011 + P111
P000 + P001 + P101

⎫⎬⎭ ,

where Pymt ≡ Pr(Yi = y,Mi = m|Ti = t) for all
y,m, t ∈ {0,1}. These bounds always contain zero, im-
plying that the sign of the ACME is not identified with-
out an additional assumption even in this special case.

To construct a sensitivity analysis, we follow the
strategy of Imai and Yamamoto (2010) and first express
the second assumption of sequential ignorability using
the potential outcomes notation as follows:

Pr
(
Yi(1,1) = y11, Yi(1,0) = y10,

Yi(0,1) = y01, Yi(0,0) = y00|Mi = 1, Ti = t ′
)

= Pr
(
Yi(1,1) = y11, Yi(1,0) = y10,(31)

Yi(0,1) = y01, Yi(0,0) = y00|
Mi = 0, Ti = t ′

)
for all t ′, ytm,∈ {0,1}. The equality states that within
each treatment group the mediator is assigned indepen-
dent of potential outcomes. We now consider the fol-
lowing sensitivity parameter υ , which is the maximum
possible difference between the left- and right-hand
side of equation (31). That is, υ represents the upper
bound on the absolute difference in the proportion of
any principal stratum that may exist between those who
take different values of the mediator given the same
treatment status. Thus, this provides one way to para-
metrize the maximum degree to which the sequential
ignorability can be violated. (Other, potentially more
intuitive, parametrization are possible, but, as shown
below, this parametrization allows for easier computa-
tion of the bounds.)

Using the population proportion of each princi-
pal stratum, that is, π

m1m0
y11y10y01y00 ≡ Pr(Yi(1,1) = y11,

Yi(1,0) = y10, Yi(0,1) = y01, Yi(0,0) = y00,Mi(1) =
m1,Mi(0) = m0), we can write this difference as fol-
lows: ∣∣∣∣

∑1
m0=0 π

1m0
y11y10y01y00∑1

y=0 Py11
−

∑1
m0=0 π

0m0
y11y10y01y00∑1

y=0 Py01

∣∣∣∣
(32)

≤ υ,∣∣∣∣
∑1

m1=0 π
m11
y11y10y01y00∑1

y=0 Py10
−

∑1
m1=0 π

m10
y11y10y01y00∑1

y=0 Py00

∣∣∣∣
(33)

≤ υ,

where υ is bounded between 0 and 1. Clearly, if and
only if υ = 0, the sequential ignorability assumption is
satisfied.

Finally, note that the ACME can be written as
the following linear function of unknown parame-
ters π

m1m0
y11y10y01y00 :

δ̄(t) =
1∑

m=0

1∑
y1−t,m=0

1∑
y1,1−m=0

1∑
y0,1−m=0

(34) ( 1∑
m0=0

πmm0
y11y10y01y00

−
1∑

m1=0

πm1m
y11y10y01y00

)
,

where one of the subscripts of π corresponding to ytm

is equal to 1. Then, given a fixed value of sensitivity
parameter υ , you can obtain the sharp bounds on the
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ACME by numerically solving the linear optimization
problem with the linear constraints implied by equa-
tions (32) and (33) as well as the following relation-
ship implied by the ignorability of the treatment assign-
ment:

Pymt =
1∑

y1−t,m=0

1∑
yt,1−m=0

1∑
y1−t,1−m=0

1∑
m1−t=0

πm1m0
y11y10y01y00

(35)
for each y,m, t ∈ {0,1}. In addition, we use the linear
constraint that all π

m1m0
y11y10y01y00 sum up to 1.

We apply this framework to the media framing ex-
ample described in Sections 2 and 6. For the purpose
of illustration, we dichotomize both the mediator and
treatment variables using their sample medians as cut-
points. Figure 3 shows the results of this analysis. In
each panel the solid curves represent the sharp upper
and lower bounds on the ACME for different values
of the sensitivity parameter υ . The horizontal dashed
lines represent the point estimates of δ̄(1) (upper panel)
and δ̄(0) (lower panel) under Assumption 1. This cor-
responds to the case where the sensitivity parameter

FIG. 3. Nonparametric sensitivity analysis for the media framing
experiment. In each panel the solid curves show the sharp upper
and lower bounds on the ACME as a function of the sensitivity pa-
rameter υ , which represents the degree of violation of the sequen-
tial ignorability assumption. The horizontal dashed lines represent
the point estimates of δ̄(1) (upper panel) and δ̄(0) (lower panel) un-
der Assumption 1. In contrast to the parametric sensitivity analysis
reported in Section 6.2, the estimates are shown to be rather sensi-
tive to the violation of Assumption 1.

is exactly equal to zero (i.e., υ = 0), so that equa-
tion (31) holds. The sharp bounds widen as we increase
the value of υ , until they flatten out and become equal
to the no-assumption bounds given in equations (29)
and (30).

The results suggest that the point estimates of the
ACME are rather sensitive to the violation of the se-
quential ignorability assumption. For both δ̄(1) and
δ̄(0), the upper bounds sharply increase as we increase
the value of υ and cross the zero line at small values
of υ [0.019 for δ̄(1) and 0.022 for δ̄(0)]. This con-
trasts with the parametric sensitivity analyses reported
in Section 6.2, where the estimates of the ACME ap-
peared quite robust to the violation of Assumption 1.
Although the direct comparison is difficult because
of different parametrization and variable coding, this
stark difference illustrates the potential importance of
parametric assumptions in causal mediation analysis;
a significant part of identification power could in fact
be attributed to such functional form assumptions as
opposed to empirical evidence.
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